

FAKULTÄT FÜR WIRTSCHAFTS- UND SOZIALWISSENSCHAFTEN

Going viral: Inflation Narratives and the Macroeconomy

Max Weinig Ulrich Fritsche

WiSo-HH Working Paper Series
Working Paper No. 86
December 2024

WiSo-HH Working Paper Series Working Paper No. 86 December 2024

Going viral: Inflation Narratives and the Macroeconomy

Max Weinig, University of Hamburg Ulrich Fritsche, University of Hamburg & KOF ETH Zurich

ISSN 2196-8128

Font used: "The Sans UHH" / Lucas Fonts

Die Working Paper Series bieten Forscherinnen und Forschern, die an Projekten in Federführung oder mit der Beteiligung der Fakultät für Wirtschafts- und Sozialwissenschaften der Universität Hamburg tätig sind, die Möglichkeit zur digitalen Publikation ihrer Forschungsergebnisse. Die Reihe erscheint in unregelmäßiger Reihenfolge.

Jede Nummer erscheint in digitaler Version unter https://www.wiso.uni-hamburg.de/de/forschung/working-paper-series/

Kontakt:

WiSo-Forschungslabor Von-Melle-Park 5 20146 Hamburg

E-Mail: experiments@wiso.uni-hamburg.de

Web: http://www.wiso.uni-hamburg.de/forschung/forschungslabor/home/

Going Viral: Inflation Narratives and the Macroeconomy

Max Weinig* Ulrich Fritsche[†]

December 11, 2024

Abstract

In recent years, there has been increasing interest in the analysis of narratives in macroeconomic research. Our paper contributes to this research by proposing a way to identify and extract economic narratives from media reports. Therefore, this paper applies state-of-the-art bag-of-words text analysis methods to a large news corpus covering five years of news coverage in combination with results from a survey study on recent inflation narratives (Andre et al., 2023) in the US. This approach enables us to measure the prevalence and spread of inflation narratives over time and to examine the role of these narratives in aggregate macroeconomic expectations. Using Granger causality tests and local projections, we provide empirical evidence on the dynamics between inflation narratives and inflation expectations. Moreover, the paper highlights the vast heterogeneity across short-term and mid-term inflation expectations as well as socioeconomic groups.

JEL codes: D84, E31, E32, E52, E71

Keywords: narratives, expectations, inflation, media, textual data, machine learn-

ing

We thank Sami Diaf, Victoria Hünewaldt, and Lisa Wegner for their very helpful comments. Furthermore, we thank seminar audiences at the International Conference on Computational Statistics, the International Conference on Macroeconomic Analysis and International Finance, the Narrative Economics Alliance Ruhr, the University of Gießen, the KOF Swiss Economic Institute of the ETH Zürich, the Forum for Macroeconomics and Macroeconomic Policies, and the IMK Macroeconomic Policy Institute Workshop for their comments. This work was funded by the Federal Ministry of Education and Research (BMBF) and the Free and Hanseatic City of Hamburg under the Excellence Strategy of the Federal Government and the Länder.

^{*}Corresponding author. Universität Hamburg, email: max.weinig@uni-hamburg.de †Universität Hamburg &KOF ETH Zurich, email: ulrich.fritsche@uni-hamburg.de

1 Introduction

For the first time in decades, numerous countries world-wide, including the United States, are facing high inflation rates. This is important because households generally perceive high inflation as one of the most important (economic) policy issues (Shiller, 1997; Stantcheva, 2024). While some inflation might be desirable, rates way above the two percent target impose substantial costs on society (Romer, 2012). Consequently, its origin and the underlying mechanisms have been and continue to be subject of ongoing debate. Blanchard and Bernanke (2023) attribute the increase in inflation to a combination of supply constraints and robust aggregate demand. Reis (2022) highlights an "overly long period of expansionary policy", and central banks tolerating higher inflation rates. Weber and Wasner (2023) discuss the role of market power to hike prices, which indicates "sellers' inflation". On a theoretical level, Lorenzoni and Werning (2023) provide a decomposition of inflation and argue that the general cause of inflation is conflict or disagreement. Expectations are of great importance in their conceptualization, as they shape the aspirations of workers and firms.

In standard New Keynesian models, this idea of forward-looking agents is essential, as Werning (2022) demonstrates. In these models, expectations are seen as a driver of inflation dynamics. Influential on forward-guidance was the work by Krugman et al. (1998), who proposed that during a liquidity trap, central banks should be able to stimulate the economy by raising inflation expectations through credibility. This is why central banks closely monitor the expectations of households, firms, and experts— or, as Jerome Powell, the current Chair of the Federal Reserve, puts it: "Our monetary policy framework emphasizes the importance of well-anchored inflation expectations, both to foster price stability and to enhance our ability to promote our broad-based and inclusive maximum employment objective." (Powell, 2021).

A long tradition of empirical economic research addresses the question of whether and to what extent the expectations of households influence economic decisions. Two moments are subjects of interest: the consumption-saving nexus in the Euler-Equation and inflation uncertainty as a precautionary saving motive (D'Acunto et al., 2023). Regarding the former, work by Juster and Wachtel (1972) suggested already in the 1970s that inflation expectations influence expenditure spent on durable goods, while the findings fo Burch and Werneke (1975) indicate a strong relationship between inflation expectations and the national saving rate. More recent research by Bachmann et al. (2015) is also in line with both moments. The authors do report a significant negative relationship between expectations and savings, but only for a subset of households, whose expectations are within one percentage point of the actual realized inflation. By linking survey data on inflation expectations of households to administrative data, Vellekoop and Wiederholt (2019) report a negative relationship between inflation expectations and net worth. With a pseudo-panel study, the results of Duca-Radu et al. (2021) are in line with the Euler equation for all participants, however, smaller effect sizes for more inaccurate expectations. Further supporting evidence comes from Dräger and Nghiem (2021), who report positive correlation between current spending and inflation expectations for a German sample. Their results further indicate the importance of attention to monetary news as an amplifier of this channel. However, regarding the actual spending, the findings by Burke and Ozdagli (2023) suggest that the expectation

effect applies only to spending on durable goods.

While the introduction of rational expectations by Muth (1961), Lucas (1972), Lucas and Sargent (1979) led to a revolution in economic modeling, the last two decades have been marked by strong criticism of the "full information rational expectations" (FIRE) model (Coibion and Gorodnichenko, 2012). Alternative approaches to the formation of expectations include "sticky information" (Mankiw and Reis, 2002; Carroll, 2003, 2005; Döpke et al., 2008b,a), "rational inattention" (Woodford, 2001; Sims, 2003), "learning" (Evans and Honkapohja, 2001) and "bounded rationality" (Gabaix, 2014; Fuster et al., 2010; Evans and Honkapohja, 2001). Regarding the heterogeneity of expectations, Weber et al. (2022) identify four different channels that affect subjective inflation expectations:

- 1. Exposure to heterogeneous price signals (D'Acunto et al., 2021b),
- 2. different media information sets (Carroll, 2003, 2005; Döpke et al., 2008b; Bachmann et al., 2021; D'Acunto et al., 2021a; Dräger et al., 2016),
- 3. cognitive ability, education, and the usage of heuristics (D'Acunto et al., 2019a; D'Acunto et al., 2022; Gennaioli and Shleifer, 2010), and
- 4. heterogeneous incentives to obtain information (Cavallo et al., 2017).

This observed heterogeneity and subjectivity of inflation expectations is largely undisputed nowadays, however, there is still no consensus in economics as to what determines these expectations. To some extent, "narrative economics" (Shiller, 2017, 2019) has created a link to modern social science and psychological analysis of expectations and uncertainty (Beckert, 2016; Beckert and Bronk, 2018; Tuckett and Nikolic, 2017). The theoretical argument is based on findings from literary studies, sociology, anthropology, and psychology that highlight the importance of narratives for human beings and human decision-making (Shiller, 2017). It states that narratives about the economy pervade and guide decisions in uncertain moments. Therefore, they incorporate "[...] causal, temporal, analogical, and valence information about agents and events, which serve to explain data, imagine and evaluate possible futures, and motivate and support action over time" (Johnson et al., 2023). This highlights the importance of expectations, i.e. narratives for imagining and evaluating the future (Johnson et al., 2023; Beckert and Bronk, 2018).

In microeconomic models (Eliaz and Spiegler, 2020; Eliaz et al., 2022), the narrative approach has been implemented, establishing a connection with the statistical and epistemological literature on causality (Pearl, 2009). Eliaz and Spiegler (2020) refer to political debates and suggest that actors are encouraged to strategically adopt political stances aligned with narratives, which both perceive to have more positive and promising outcomes. From a macroeconomic perspective, Shiller (2017, 2019) emphasizes the role of "going viral" for narratives by focusing on the spread and dynamic of economic narratives. Following Shiller (2019), this aspect is crucial because narratives are closely linked to "animal spirits" (Shiller and Akerlof, 2009, 17). Thus, viral narratives may lead to fundamental shifts and turning points, being active drivers of the economy and of activity in the economy (Roos and Reccius, 2024). Research should therefore focus on the spread and dynamics of economic narratives.

In a recent paper, Andre et al. (2023) take the existing strand of research on expectations and link it to the strand of "narrative economics": Based on a working definition of economic narratives as "causal accounts of past economic events" (Andre et al., 2023, 5), the authors focus on measuring backward-looking narratives through open-ended questions. In order to classify narratives, the authors use the concept of "directed acyclic graphs" (DAG) (Pearl, 2009). Their findings suggest that narratives among households substantially differ from those of experts. This is partly explained by different political attitudes and news consumption. Moreover, they provide experimental evidence that expectations respond to narrative priming and that mass media is an important source of narratives.

The relevance of the media as an intermediary of narratives (Ter Ellen et al., 2022) is considered by some empirical research. Larsen et al. (2021) analyze news coming from the Dow Jones Newswire by means of a Latent Dirichlet Allocation (LDA) model (Blei et al., 2003). Their results suggest that media news reports are a good predictor of inflation expectations. Müller et al. (2022) use an augmented version of the static LDA, which allows for a dynamic analysis of news about inflation in German newspapers, yet without considering them as determinants of expectations. Related work comes from Hong et al. (2022), who combines LDA modeling with forecasting techniques. Macaulay and Song (2022) measure narratives by means of LDA on social media and investigate their effects on consumer sentiments with a high-frequency event study. All these papers have one aspect in common: They rely on (dynamic) exploratory LDA topic models to measure narratives in the media, which limits their methodological approach to a broad definition of narratives. Therefore, the previous approaches were unable to identify concrete predefined concepts of narratives (Roos and Reccius, 2024).

Building upon the existing research, this paper addresses the following research objectives:

- 1. Provide a methodological approach that goes beyond existing research to identify narratives in large text corpora and enables researchers to measure their prevalence according to predefined concepts.
- 2. Focus on the predominant inflation narratives in media reports during the recent inflationary period.
- 3. Investigate if inflation narratives are potential causal determinants of expectations.
- 4. Finally, this paper examines whether certain narratives have a stronger impact on certain socio-economic groups (e.g. by income, education, age, numeracy) than other narratives.

In order to do that, the paper utilizes the existing methodological approach to measure narratives a step further and proposes a combination of results coming from the survey study by Andre et al. (2023) and a "keyword-assisted topic model" (keyATM) in a variant called "dynamic keyATM", proposed by Eshima et al. (2024). This allows us to provide prior information about the narratives into the Bayesian estimation. This novel method overcomes the common problem of measuring specific concepts while using explorative topic models, e.g. LDA by Blei et al. (2003); it enables the researcher

to specify a number of keywords to label topics prior to fitting the model on the data. For our purpose, we construct fourteen keyword-specified topics, that incorporate demand and supply narratives, as well as miscellaneous narratives, e.g., pandemic or war narrative, based on the findings by Andre et al. (2023). We refine our measurements by applying a Latent Semantic Scaling (LSS) technique (Watanabe, 2021) to identify the direction of the narratives' argument and to construct corresponding indices. To investigate their predictive power over macroeconomic variables, we conduct multivariate Granger causality tests. Further, we study the diffusion of each narrative by applying "local projections" techniques (Jordà, 2005).

Our empirical findings suggest that during the current inflationary period, narratives about monetary policy, demand shifts, supply chain issues, energy prices, labor shortages, corporate profits, and the pandemic as causes of rising inflation were highly significant. Moreover, stories about the war in Ukraine showed a sudden and strong increase, which, however, did not persist. As our time series analysis indicates, many of these narratives contain predictive power for short- and medium-term household inflation expectations. Our analysis highlights the importance of narratives surrounding government spending, supply chains, labor shortages, war, and corporate profits in shaping household inflation expectations. Supplementary, by analyzing the impulse responses of a shock in the narratives, we provide evidence that narrative diffusion elevates households' inflation expectations, 1-year-ahead expectations in particular. When comparing shocks across narratives, we notice more anchored expectations with respect to a shock in the supply chain, demand shift, and profits narratives. Along the various socioeconomic determinants, such as income, education, age, etc., we find clear differences in the way narratives affect inflation expectations. For example, our analysis indicates that the energy and profits narratives are the main driver of medium-term expectations for households with lower annual incomes, while we find more Granger causalities for middle- and high-income households, including several demand narratives. This suggests a strong group-specific susceptibility to narratives and underlines the need for interdisciplinary (social science) analyses when it comes to explaining heterogeneous inflation expectations (Beckert, 2016). Finally, our results emphasize the spread and change of narratives over a short period of time and highlight economic narratives as a determinant of expectation building.

The paper is structured as follows: Firstly, Section 2 briefly describes the datasets and some of the preceding pre-processing steps. Further, we provide a short overview of the narratives identified by Andre et al. (2023) with corresponding pre-selected keywords, and further describe the applied empirical methods, namely keyATM, LSS, Granger causality tests, and local projections. Subsequently, section 3 offers a first outline of the dynamic keyATM results. Secondly, we report results from the LSS and provide constructed indices of narratives. Lastly, we present estimation results from the Granger causality tests and local projections. Further background information, the Online Appendix and the replication code will be made available via a repository at https://github.com/ValweM/InflationNarratives¹

¹All calculations in the paper were performed using R software (R Core Team, 2022) version 4.4.1. The software is licensed under GPL-2/GPL-3. Furthermore Python version 3.12.2 (Van Rossum and Drake, 2009) was used for several NLP pre-processing tasks (e.g lemmatization).

2 Data and Methods

2.1 Data

Two different datasets are used for the analysis: First, the time series of the occurrence of certain narratives described by Andre et al. (2023) in a news corpus from the *Dow Jones Newswires Machine Text Feed and Archive* database.² The dataset includes content of the following areas: market-moving M&A, exclusives, and earnings news; full-text feeds from Dow Jones sources (Newswires, The Wall Street Journal, Barron's, MarketWatch); global company news; central bank, macroeconomic, political, FX, commodities and energy news; third-party press release wires (BusinessWire, PR Newswire, Globe Newswire and others). It is important to note that the corpus includes one of the largest newspapers in the US; the Wall Street Journal.

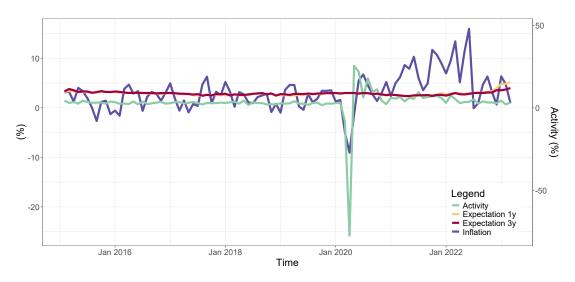


Figure 1: Macroeconomic time series

Note: 'Activity' refers to the 'Coincident Economic Activity Index for the United States', monthly, seasonally adjusted at annual rates. 'Expectation 1y' and 'Expectation 3y' refers to 'New York Fed: Median 1- and 3-year ahead expected inflation rate', monthly, not seasonally adjusted. 'Inflation' refers to 'Consumer Price Index for All Urban Consumers: All Items in U.S. City Average', monthly, seasonally adjusted at annual rates. Source: https://fred.stlouisfed.org/ and https://www.newyorkfed.org/microeconomics/sce.html

For the investigation, we use a subset of news content taken from the full corpus, filtered by keywords such as "inflation" for the period January 2018 to January 2023 to cover the recent inflation period. Further, the period is limited to five years due to the constrained timeliness of the survey-based measured inflation narratives in Andre et al. (2023) and filtered by subject codes to select only relevant news sources. This amounts to a corpus of 159,440 documents. Prior to the analysis, further transformations and preprocessing steps are applied to the selected corpus, which are common when working with bag-of-words methods (Grimmer et al., 2022), e.g. lemmatization, stop words removal, constructing a document-feature matrix (see description in section A.2).

²See https://developer.dowjones.com/site/docs/newswires_feeds/dow_jones_text_feed_and_archive/ for details.

Second, for the time series analysis we use a macroeconomic time series on CPI inflation (U.S. Bureau of Labor Statistics), inflation expectations (Median survey-based inflation expectations of US households one and three years ahead, New York Fed Survey) and economic activity (Coincident Economic Activity Index (CEI), Federal Reserve of Philadelphia) on a monthly basis (see figure 1).

CPI inflation and the economic activity index are seasonally adjusted at annual rates, while the inflation expectations are not seasonally adjusted. Moreover, as figure 1 shows, the economic activity time series contains several outliers, caused by the first Covid-19 lockdown in 2020. This may introduce a bias tp our estimations. Therefore, we treat these outliers with a dummy variable after they have been detected with the tsoutlier() function as implemented in Hyndman et al. (2022).

2.2 Methods

2.2.1 Semi-supervised Keyword-assisted Topic Model (keyATM)

Eshima et al. (2024) proposed the keyATM model as a semi-supervised alternative to the benchmark latent dirichlet allocation (LDA) topic model (Blei et al., 2003). They argue: "[u]nfortunately, although topic models can *explore* themes of a corpus [...], they do not necessarily *measure* specific concepts of substantive interest." (Eshima et al., 2024, 1). Furthermore, benchmark LDA topic models -as an unsupervised method-suffer from the post-hoc interpretability problem (Boyd-Graber et al., 2014).

The semi-supervised approach introduced by Eshima et al. (2024) enables researchers to label topics by specifying keywords before fitting the model. The authors describe it as a "semi-supervised topic model that combines a small amount of data with a large amount of unlabelled data." (Eshima et al., 2024, 2). The baseline keyATM is visualized as a plate representation in figure A.F.1 in the Online Appendix.

Specifically, the corpus has D documents and each document has N_d words. w_{di} stands for the i^{th} word in the d^{th} document. The model formulation of keyATM considers two types of topics: keyword topics (\tilde{K}) and non-keyword topics (K). For each keyword topic k the researcher has to specify a set L_k of keywords. The model is flexible enough to allow keywords to be assigned to different keyword topics simultaneously. The data generation process is modeled in such a way that at first, a latent topic variable z_{di} is sampled from the topic distribution of the document θ_d . If the sampled topic belongs to the non-keyword group, then the word is drawn from the corresponding word distribution of the topic (ϕ_k) . If the topic belongs to the keyword group, a Bernoulli random variable s_{di} is drawn with probability π_k . This serves as an indicator variable to determine whether the word should be drawn from a set of keywords based on the probability vector $\tilde{\phi}_k$ or from the standard topic-word distribution ϕ . As the estimation is based on standard Bayesian approaches, η , β , γ , $\tilde{\beta}$ indicate priors (see Eshima et al. (2024, 4 f.) for a more detailed exposition).

Since the model is now based on a mixture of distributions, one with positive probabilities only for keywords on the keyword list and one with positive probabilities for all words, this implies greater prior means for the frequency of the predefined keywords than for the non-keywords in a given topic. As a result, the method is encouraged to give greater importance to keywords *prior* to estimation, but to learn

the exact degree of importance from the data. Thus, researchers introduce *a priori* qualitative information into the estimation process of the topic model.

For this paper we make use of specific variant of the keyATM, namely the dynamic keyATM (Eshima et al., 2020, 22 ff.). Figure A.F.2 in the Online Appendix provides a plate representation of the model. As shown in the plate representation, the baseline keyATM is now extended by a hidden Markov model (HMM) with R states where $h_{t[d]}$ denotes the latent state of document d for time t. The transition probability matrix of the HMM is sparse, allowing only a one-step forward transition (to simplify the estimation). The dynamic keyATM allows the topic proportion θ_d to evolve over time by letting α vary across the different latent states. The authors argue that "(m)odeling α instead of θ_d makes (the model) less sensitive to short-term temporal variation".

For the selection of the pre-specified keywords, we follow the approach of Eshima et al. (2024) and guide our selection of keywords by the definition and example quotes by the survey study of Andre et al. (2023). Moreover, we take into account their results from a penalized logistic regression, which predicts whether or not a DAG factor was manually assigned to a response based on the text data. Finally, we conducted word embeddings of these keywords to optimize our selection. Accordingly, we applied an unsupervised learning algorithm for obtaining vector representations for words called GloVe by using the R Package text2vec (Selivanov et al., 2022). In table 2, all prior-selected keywords are listed, additionally with explanations coming from Andre et al. (2023). In contrast to their definitions, we use less restrictive definitions due to methodological limitations of the bag-of-words approach, which prevent us from further narrowing them down. Therefore, we treat government mismanagement as "politics", and the price-gouging narrative as "profits". The pent-up demand narrative is excluded due to methodological challenges in distinguishing it from the demand (residual) narrative. Additionally, we do not consider the base effect and inflation expectations narratives, as they do not appear in the households' sample in the original study.

2.2.2 Latent Semantic Scaling

Our semi-supervised topic model approach allows us to quantify the prevalence of stories about the potential causes of inflation. To measure a narrative, it is important to identify the direction of its argument, e.g., whether monetary policy is causing rising or falling inflation. Both narratives may exist. Thus, it is essential to distinguish between arguments attributing the different factors to either rising or falling inflation rates. In a way, we follow the idea of "tone-adjusted time series" by (Larsen and Thorsrud, 2019). To ensure a distinction, simple n-gram prefiltering could be applied, utilizing n-grams such as "rising inflation" or "rising prices". This, however, would only ensure that rising inflation rates are discussed at least once in each document. A more nuanced and accurate measurement of the argument is needed. Therefore, we apply the recently proposed semi-supervised document scaling technique "Latent Semantic Scaling" (LSS, Watanabe (2021)) which is based on a word embedding approach. This allows us to develop a content-related polarity dictionary to indicate if a document is mainly about falling or rising inflation rates.

Classification	"Positive" (= increasing)	"Negative" (= decreasing)
	accelerate	decline
	acceleration	decrease
	elevate	deflation
	high	fall
	increase	low
	persist	lower
	persistent	reduce
	pressure	persistent
	rise	reduction
	surge	weak

Table 1: Seed words for LSS initialization

Sentiment or polarity analyses are traditionally conducted by means of a dictionary approach (Grimmer et al., 2022, 180). Consequently, the major challenge is to select a domain specific dictionary or construct an own dictionary. To our knowledge, the former does not exist for the context of inflation, while the latter would be extremely time consuming. Then again, supervised machine learning methods could by applied to predict the sentiment of each document. This involves manual coding of a sufficiently large corpus, to insure reappearance of words in the training and test set, which again is time and cost intensive (Watanabe, 2021, 84). In contrast, LSS allows us to construct our own polarity dictionary using seed and target words. Based on the proximity to a selection of seed words for each semantic dimension, polarity scores of words are computed. To estimate the semantic closeness of words, LSS recalls on singular value decomposition (SVD) of a document-feature matrix. The selected seed words are listed in table 1. For further refinement of the polarity analysis on inflation, relevant target words are selected. Therefore, we opt for glob pattern "infla*" and "price*". Following our selection, the LSS method generates a collection of statistically significant words that occur within a window of five words around the target words. Polarity scores of words are computed as follows:

$$g_f = \frac{1}{|s|} \sum_{s \in S} \cos(v_s, v_f) P_s \tag{1}$$

where g_f are words, s seed words, p_s user-provided polarity of seed words, and $cos(v_s, v_f)$ the cosine similarity between the seed word vector and the word vector associated with the word f (Watanabe, 2021, 86). Subsequently, the polarity scores of the documents are predicted by weighting word polarity scores by their frequency in the document:

$$y = \frac{1}{N} \sum_{f \in F} g_f h_f \tag{2}$$

where h_f is the frequency of words and N the total number of words in the model. The documents' scores are symmetrically distributed around the mean ($\mu = 0$), and rescaled by standard deviation ($\sigma = 0$). In our case, a negative score indicates that

Category	Explanation	Keywords
Demand		
Government Spending	Increases in government spending (e.g., stimulus payments)	infrastructure, agreement, biden, spending, deficit, bipartisan, package, stimulus, check
Monetary Policy	Loose monetary policy by the Federal Reserve	fed, quantitative, easing, loose, monetary, interest
Demand Shift	Shift of demand across sectors	shift, trend, preference, behavior, pandemic, sentiment, retail, restaurant, online, service
Demand (residuals)	Increase in demand that cannot be attributed to the other demand channels.	recover, reopen, pandemic, demand, grow, consumption, growth, domestic, output
Supply		
Supply chain issues	Disruption of global supply chains	shortage, cost, disruption, chain, shipping, delay, supply, pressure
Labor shortage	Shortage of workers, e.g., due to some workers dropping out of the labor force, and higher wage costs	worker, employment, labor, wage, workforce, labour, job, strike, union, hire
Energy crisis	The global energy crisis, leading to shortages of, e.g., oil and natural gas and higher energy prices	crude, gas, gasoline, oil, fuel
Supply (residual)	Negative supply effects other than labor shortage, supply chain issues, energy crisis.	supply, production, capacity, inventory, industry
Miscellaneous		
Pandemic	The COVID-19 pandemic, the global pandemic recession, lockdowns, and other policy measures	pandemic, covid-19, virus, coronavirus, infection, outbreak, case
Politics	Policy failure, mismanagement by policy-makers, policymakers are blamed	part, republican, trump, congress, senate, president, biden, democrats, government
Russia-Ukraine war	The Russian invasion of Ukraine, the international economic, political, and military response	russia, war, ukraine, invasion, moscow, putin, military
Government debt	High level of government debt	debt, public, national, federal, deficit, borrowing, government, balance
Tax increases	Tax increases, such as VAT hikes	tax, raise, reform, legislation, overhaul, reduction
Profits	Greedy companies exploiting opportunities to increase profits, companies trying to make up for the money they lost during the pandemic	margin, corporate, profitability, profit

Table 2: Narratives, explanations, and keywords

the document is mainly about falling inflation rates, while a positive score indicates that the document is mainly about rising inflation rates. For our further analysis, we constructed narrative indices based on the document scores and the topic prevalence time series from our keyATM analysis. For this, we multiply the topics' proportions on the document level with the document polarity score. Finally, we aggregated our index on monthly level.

2.2.3 Granger Causality Tests

In order to study the macroeconomic dynamics of our narratives, we first conducted a series of Granger causality test using our constructed narrative indices as a proxy for the narratives' virality. This allows us to study the predictive power of our narrative time series on macroeconomic variables (inflation expectations, CPI inflation, economic activity) and test their (weak) exogeneity. The Granger causality tests are constructed as multivariate tests in a vector autoregressive model (VAR) setting. The hypotheses of no Granger causality is tested by means of F test for joint significance. We follow the argument of Lütkepohl (2005), that an χ^2 -distribution is often a poor approximation when working with a small sample size as ours. For our purpose we again consider five macroeconomic variables: the households' 1- and 3-year inflation expectations, the CPI inflation, the economic activity. The Granger causality statistics are used to examine whether the lagged values of one variable help to predict another one. In a more general sense we say that variable z Granger causes y if:

$$\mathbb{E}(y_t|I_{t-1}) \neq \mathbb{E}(y_t|J_{t-1}) \tag{3}$$

Here, the vector I_{t-1} contains past values of y and z, while the vector J_{t-1} only contains past information on y (Wooldridge, 2013). Granger causality thus follows the idea that a cause cannot succeed the effect (Lütkepohl, 2005, 41).

2.2.4 Local Projections

To further investigate the effects of increasing narrative diffusion at the macroeconomic level, we resort to dynamic time series models and, in particular, impulse response functions (IRF). Classical tools are VARs (Sims, 1980). This method, however, has some drawbacks: it is prone to mis-specification, difficult to apply to non-linear cases, and usually necessitates a relatively long lag length to ensure proper calculation (Jordà, 2005, 161). The latter is of particular importance for the present study, since a rather short observation period is used. We therefore decided to estimate the dynamic response sequences on the basis of "local projections" (LP) method (Jordà, 2005). Plagborg-Møller and Wolf (2021) recently proved that under reasonable assumptions, VAR and LP estimate the same IRFs.

The basic idea of LP is to compare a conditional forecast of an event using currently available information at the time of a shock to a forecast without the shock (Jordà, 2005, 163):

$$IR(t, s, \boldsymbol{d}_i) = \mathbb{E}(\boldsymbol{y}_{t+s}|\boldsymbol{v}_t = \boldsymbol{d}_i; \boldsymbol{X}_t) - \mathbb{E}(\boldsymbol{y}_{t+s}|\boldsymbol{v}_t = O; \boldsymbol{X}_t), \ s = 0, 1, 2, ..., S$$
 (4)

The operator $\mathbb{E}(.|.)$ denotes the best predictor of the mean square deviation, $X_t \equiv (y_{t-1}, y_{t-2}...)$ and d_i is a vector containing all relevant shocks. Unlike in the VAR

method, the LP method estimates the impulse response using least squares regressions for each time horizon s with s = 0, 1, 2, ...S (Adämmer, 2019, 423):

$$\mathbf{y}_{t+s} = \alpha^{s} + \beta_{1}^{s+1} y_{t-1} + \beta_{2}^{s+1} y_{t-2} + \dots + \beta_{p}^{s+1} y_{t-p} + \mathbf{u}_{t+s}^{s}, \ s = 0, 1, 2..., S$$
 (5)

Here, α^s is a vector of constants and β_i^{s+1} are matrices with coefficients for each lag i and forecast horizon s+1 (Jordà, 2005, 163). The β coefficients derived from the regressions are used to construct the impulse responses. Therefore, the collection of all regressions from equation 5 are called *Local Projections* (Adämmer, 2019, 423). The impulse responses of these local linear projections are defined as:

$$\widehat{IR}(t, s, \mathbf{d}_i) = \hat{\mathbf{B}}_1^s \mathbf{d}_i, \ s = 0, 1, 2, ..., h$$
 (6)

where \hat{B}_1^s contains the coefficients of the impulse response and d_i is the vector of all relevant shocks.

2.2.5 Stationarity and De-trending

The modelling of time series in VAR or ARDL models is typically based on the assumption of weak stationarity (Kirchgässner and Wolters, 2007, 13). If this property is not present, there are several options: any long-run relationships that may exist can be taken into account by modelling as an error correction model, or the time series can be transformed into a stationary representation using appropriate transformations.

Due to the short time series and the simultaneous consideration of unit root tests (see A.T.1 in Online Appendix), we had to choose a trend removal approach. Simple differencing may come at costs, as such an approach may lead to information loss and spurious independence, which could result in insignificant coefficients or downward biased results (Kirchgässner and Wolters, 2007, 201). However, modelling the time series at the level only makes sense if the long-term relationships are stable. We have therefore chosen another form of trend adjustment.

As Hamilton (2018); Phillips and Jin (2021) have shown, applying the popular HP filter (Hodrick and Prescott, 1997) has the potential of causing an inadequate statistical trend removal leading to (worsening) spurious results, especially when the default tuning parameter is used. Several alternatives have been suggested in the literature, including the Hamilton-Filter (Hamilton, 2018) and a boosted HP-Filter (Phillips and Shi, 2021). We opt for the latter, because it enables us to achieve stationarity without a loss of observation and its proved robustness with shorter sample sizes (Phillips and Jin, 2021). Thus, we report our baseline estimations with trend-cycle filtered time series by means of the boosted HP-Filter.

For robustness checks, we follow the suggestion of the literature (Kirchgässner and Wolters, 2007, 159) and provide level and difference estimations in the Online Appendix. Further, sufficient consideration of lags of endogenous variables should help avoid the problem of "spurious regression" results. To select the system's lag order, we rely on the Schwarz information criterion (SC) with a maximum of 4 lags.

3 Empirical Analysis

In this section, we present our empirical results, starting with a descriptive overview of the measured keyATM topics between 2019 and 2023. Next, we introduce our polarity score, which measures media reports on rising or falling inflation rates based on word embeddings. By integrating our polarity analysis with the results from the keyATM, we derive our final narrative indices. Utilizing these indices, we conduct multivariate Granger causality tests to assess the predictive power of our measured narratives. By disaggregating household expectations, we are able to identify differences based on a range of socio-economic factors. Finally, we employ local projections to study the effect of narrative diffusion on the macroeconomy.

3.1 Narrative Topics

We begin by examining the interpretability of the resulting topics, following the procedure recommended by Eshima et al. (2024), and provide an overview of the topic-word distribution. In other words, we highlight terms with high probabilities of topic selection. These terms are visualized in figure 3 as wordclouds for each of the considered topics. The larger a term appears, the more likely it is to be selected for a respective topic. The wordclouds illustrate the topics' consistency with the underlying narrative concepts. Moreover, multiple pre-selected keywords appear in the vast majority of topics. This presence, along with topic-consistent terms, suggests a successful measurement of the respective concepts. For example, terms like "unemployment", "work", and "growth" are closely related to the labor shortage narrative, while "bill", "biden", and "spending" align with the government spending narrative. Nearly all topics are clearly related to their underlying narratives. The demand shift topic, however, requires additional expert knowledge for a clearer evaluation. Many terms are at least indirectly associated with shifts in demand as a cause of inflation. For instance, terms such as "sale", "expect", and "quarter" are related to sales reports or analyst forecasts, aligning with the narrative since (expected) changes in sales are part of the argument. Additionally, the wordcloud includes terms linked to consumer shifts toward online retailers (e.g., "Amazon" and "online"), full stocks (e.g., "stock" and "store"), or consumer behavior (e.g., "consumer" and "spending"). Based on this reasoning, we conclude that the topic estimation is successful.

Following the discussion on consistency, we consider the development of topic proportions over time. As figure 2 illustrates, there are some major changes present over time. The pandemic topic surge stands out overall. It is marked by a sudden increase that is sustained with elevated shares until the conclusion of 2022. The strong increase in the war topic is also sudden, although of short duration. More generally, proportions start to shift in 2021, when inflation rates began to rise. Significant steady increases are observed for the demand shift, supply chain, energy, and profits topics. Among these, the most notable increases are reported for the supply chain and demand shift topics. Additionally, the government spending and labor shortage topics experience slight increases. However, the former already starts declining in 2021. We observe more fluctuations for the demand (residual) topic. It is characterized by losses in early 2020 but recovers and gains importance, especially at the end of 2022.

We observe a similar picture in the monetary policy topic. It also declines during the early phase of the pandemic, however, it shows recovery towards the end of the observation period. On the contrary, the debt topic shows a more steady decline. This topic is characterized by only occasional minor increases during the outbreak of the pandemic. The tax topics maintained relatively stable shares throughout the observation period, whereas the politics topic shows more fluctuations. It experiences an increase at the end of 2020, coinciding with the presidential election. Additionally, we observe a slight increase in relative importance towards the end of 2022.

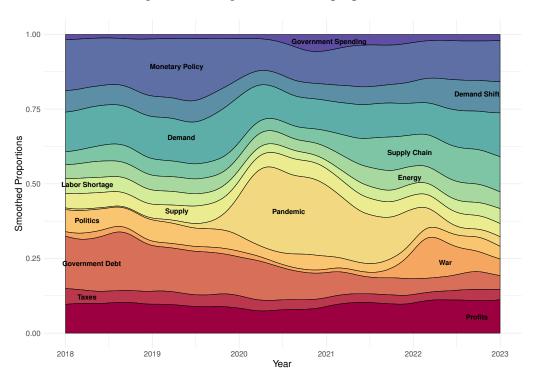


Figure 2: Change of smoothed proportions

Note: The figure shows the development of the smoothed proportions. To calculate the relative proportions only the topics with pre-specified keywords were considered. To build this plot we employed the geom_stream() function by Sjoberg (2021). We organized the topics by following the code system provided by Andre et al. (2023).

To ensure robustness irrespective of the news structure, we provide a subsample comparison keyATM estimation that only includes Wall Street Journal (WSJ) articles, as illustrated in figure A.F.6 in the Online Appendix. The WSJ corpus includes approximately 25,500 documents. While most topics exhibit similar trajectories, a few minor differences are observed. On the one hand, smaller volumes for the pandemic and supply chain topics are found in the WSJ corpus. However, a simultaneous trend is present. On the other hand, the politics topic shares are greater with the WSJ corpus. Overall, the topics in the WSJ corpus appear to react more strongly to singular events compared to the baseline corpus, which includes more financial and corporate sources.

Figure 3: Wordclouds of keyATM keyword topics

raise inflation billion republicans legislation federal senate administration fiscal trillion bill week house pass election bill biden taxu. S support spending president vote policy white package congress program policy white package congress program infrastructure climate deficit lawmaker democratic

term target growth U.S growth U.S price Powell bankinterest high point Policy rate federal monetary price powell bankinterest high point Policy rate fed official write reserve inflation central rise economic market economy time jerome increase meeting cut level bond low chairman long outlook

apple customer service market INC consumer millionstock buy high share sale fall store like time price company branch new quarter billionrise chief expect revenue growthu.s product earning increase executive big amazon accord

(a) Government spending

(b) Monetary policy

(c) Demand shift

continue business show manufacturing show food low U.S index forecast annual slow expect economist datum cost survey rate price growth sector core increase rise consumer early good fall quarter bank spending point service bank activity

write industry continue customer time production analyst inflation electric executive maker billion share car auto early high price cost chain fall supply company increase demand sale quarter million chief vehicle & XDect rise profit (10) chief vehicle eXpect rise profit [10]

chief vehicle expect rise profit [10]

market revenue earning business U.S

include consumer product shortage

airline product shortage

late risegas oil price supply company energy crude natural wti fuel demand production opec million increase analyst power accord datum expect gasoline average

(d) Demand (residual)

(e) Supply chain

(f) Energy

employeraccord
million department Week average good
time benandemic work pay level
fall market high rate inflation ost
low wage Oblabor people
early U.S worker economy
raise increase rise unemployment add
hire economist gain growth price economic
employeraccord
federal average good
hireline to be the seconomic employment add
hireline to be the seconomic employment new

usda day grain. metric trader export fall Oil soybean contract metal china add steel rise tonhigh production low goldprice market trade Ore week future demandiron increase week future demandiron copper trading wheat COrn supply analyst late crop early whinter crop early

stock market virus stimulus government demand Week growth continue economy country likely restriction sector continue economy country likely restriction sector continue economy country likely restriction application continue covid—19 economic travel Case recovery vixing and policy expect bank supply support remains measure level activity

(g) Labor shortage

(h) Supply (residual)

(i) Pandemic

iran economic european president moscow china sanction economy inflation conflict russian U.S country european president moscow china sanction economy inflation russian U.S country eurofficial russian U.S country europeant price russia oil world supply bank price russiane War supply hew gas energyeurope high rise western global invasion export risk import rade government market company

democratic democratic accord congress national campaign administration include day policy callbiden New house official leader State trump run country time lead party election right vote government people street white voter political senate write work washingsin control support economic republicans

policy low financial asset lira dollar by rise turkey government bank debt high billion market rate U.S loan economy central currency treasury global by emerge Country before the crisis growth experience of the conomic credit cut reserve time investment

(i) War

(k) Politics

(1) Government Debt

fund inflation student investment program account rate include school credit person. If inancial time benefit high work system COSt people long needplantax pay accord change increase insurance payment help increase insurance payment loan company saving government in the content of the content the conte help increase insurancepayment business loan company saving government

(m) Taxes

(n) Profits

3.2 Polarity-adjusted Narrative Time Series

So far, using a keyATM model enables us to measure reports on various causes of inflation. However, a key challenge lies in discerning the directions of these arguments, significantly impacting the subsequent econometric time series analysis. As detailed in 2.2, we address this issue by employing LSS to identify whether a document is mainly about (expected) rising or falling inflation rates. Ter Ellen et al. (2022) previously highlighted this methodological challenge. However, by applying a simple dictionary method, their approach falls short "[...] to identify the difference in tonality for specific narratives, for example, with respect to inflation, and not only the overall contribution" (Ter Ellen et al., 2022, 1533). In contrast, our approach enhances this methodology by employing semantic scaling to create a case-specific dictionary that identifies the narrative components' tonality. Subsequently, we construct an index for each narrative by multiplying the sentiment score of a document by the relative proportions of the keyATM topics in each document. This is concluded by aggregating our data on monthly-level, resulting in the final indices of the narratives.

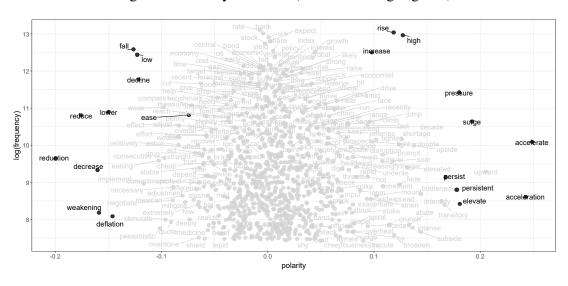


Figure 4: Polarity of words (seed words highlighted)

Note: The figure shows the polarity scores for all statistically significant words around the target words "infla*" and "price*". To compute the polarity score, the semantic closeness towards pre-selected seed words are considered. To facilitate orientation, the utilized seed words are highlighted.

To evaluate the results of LSS, we plot the polarity scores constructed from our chosen seed words in figure 4. The pre-selected seed words are highlighted in the figure. Those terms associated with falling inflation rates, such as "deflation", "negative", or "downturn" possess a negative polarity score. In contrast, terms like 'intensify,' 'tight,' or 'shortage' have a positive score. Additionally, the majority of words is located around the midpoint of the polarity score line. This is reasonable because most words are not implicitly associated with changing inflation rates. Examples, such as "affect," "likelihood," and "expect," share the characteristic of not being explicitly aligned with discussions about increasing or decreasing inflation rates. Thus, this observed neutrality can be interpreted as further validation for how accurate the estimation is.

By weighting the polarity scores for each document, as described in 2.2, we construct an aggregated polarity score at the document level. Figure 5 shows the smoothed polarity score over time. As the plot demonstrates, the polarity score experiences strong fluctuations over the observation period. The figure shows a profound decline in the polarity score since the end of 2018. This trend corresponds with the realized CPI inflation, which began to decrease in mid 2018 and maintained low levels through October 2019. During this period, the US economy experiences a slowdown in growth. This is followed by a brief recovery of the inflation polarity, starting a the end of 2019. While the overall CPI inflation remained relatively low, an upward trend was still evident ³. Following the first lockdowns, we observe an increase in the polarity score starting in mid-2020. The score turns overall positive in 2021 and remains so until late 2022, peaking in late 2021.

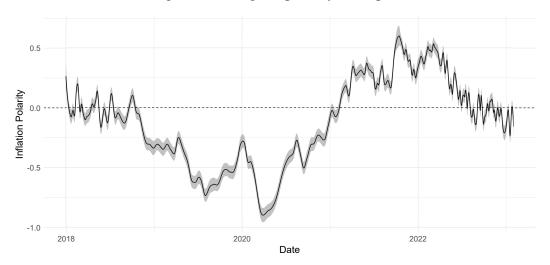
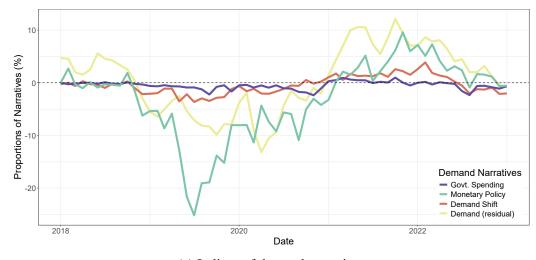


Figure 5: Change of polarity in corpus

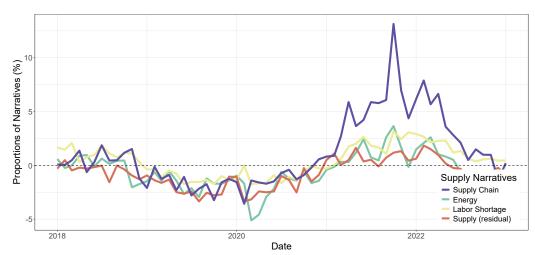
Note: The figure shows the development of the aggregated polarity score computed by LSS. To ensure readability, the time series is smoothed by applying a local polynomial regression (Watanabe, 2023) with 95% confidence intervals.

Lastly, by combining our keyATM and LSS results, we construct the final narrative indices. We begin with the demand narratives, which are visualized in figure 6a. As the figure illustrates, the demand inflation narratives are present during two considered periods: the non-inflationary (pre- and early pandemic) and the inflationary period (particularly since 2021). Until mid-2020, narratives highlighting monetary policy and residual demand factors are particularly prominent. The importance of the monetary policy narrative is exceptionally strong in mid-2019, meaning that a large number of reports about falling inflation rates were discussing aspects of monetary policy. This coincides with the previously discussed fall of the CPI rate under the inflation target. It also marks the first interest rate cut by the Fed in eleven years (Board of Governors of the Federal Reserve System, 2019). In late 2021, the narrative reaches positive values and gains relative significance in the media coverage about rising inflation rates.

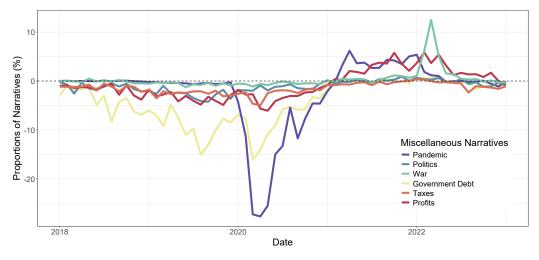
³For comparison: U.S. Bureau of Labor Statistics, Consumer Price Index for All Urban Consumers: All Items in U.S. City Average [CPIAUCSL], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/CPIAUCSL, February 21, 2024.



(a) Indices of demand narratives



(b) Indices of supply narratives



(c) Indices of miscellaneous narratives

Note: The figures show the constructed narrative time series. Negative values signify the relative importance of a narrative in the context of falling inflation rates, whereas positive values represent the relative importance in the context of rising inflation rates.

In contrast, the residual demand narrative reaches its minimum in early 2020, during the first announced economic lockdown following the COVID-19 outbreak. However, only a few months later, the narrative experiences significant positive growth. By 2021, it reaches relatively high positive values. The demand shift narrative also contributes to the media discourse about rising inflation rates but peaks with a lag compared to the demand (residual) narrative. Media reports on government spending as cause of inflation was not widespread during this entire period. We report only minor growth in late 2020 and early 2021. During this time, there were controversial discussions about large-scale infrastructure programs, which were questioned by Republicans and centrist Democrats (e.g., Peterson, 2021). In conclusion, we report positive values for all demand narratives from the beginning of 2021, but we observe significant differences in volume and timing.

Turning to the supply narratives, a similar trend becomes evident, with less negative values during the non-inflationary period. As Figure 6b shows, only the energy narrative reaches profound negative values. In contrast, all four narratives show significant positive growth in 2020 and reach positive values in early 2021. Overall, all supply narratives follow a similar path, with the supply chain reporting the steepest increase, whereas the energy narrative is more volatile. Additionally, it is the first among supply narratives to experience negative values already in mid-2022. Only the labor shortage narrative reports a positive score until the end of the observation period.

Larger differences among the narratives do we report for the miscellaneous. As figure 6c shows, the tax and politics narratives experience only minor changes, however, there is a slight increase from the end of 2020 to early 2021 for the politics narrative. In contrast, the pandemic narrative records pronounced changes and is highly polarized. While non existing until end of 2019, it experienced a remarkable decline during early 2020. This is in line with the spread of the COVID-19 virus and the associated non-pharmaceutical measures. However, the pandemic narrative is also rapidly recovers, besides a smaller setback in late 2020. The debt narrative is primarily experiencing a profound negative score in 2020, while it remained more or less insignificant during the inflationary period. Characterized by fewer extremes, the profit narrative is present in both periods. Further, the narrative is more persistent during the inflationary period with a comparably late peak in 2022. Lastly, the war narrative is not existing until early 2022, which coincides with the invasion of Russia in the Ukraine. It rapidly declines afterwards.

3.3 Granger Causality

So far, our analysis has revealed two key findings. First, combining survey study results with a semi-supervised topic model and a latent sentiment scaling technique enables us to measure and quantify known concepts of inflation narratives. Thus we are able to describe their evolution over time and identify narrative-specific polarity. Second, we provide descriptive evidence on the spread of inflation narratives. For the considered time period, those emphasizing changes in demand and its strong recovery, monetary policy, and supply issues as causes of inflation are particularly notable. Additionally, our descriptive analysis has shown that narratives on profits and specific crisis-related aspects, such as pandemic or war in Ukraine, are highly featured in news media articles.

In contrast, other narratives, including those on government spending, politics, debt, and taxes, are less often featured in reports about rising inflation rates.

To deepen our understanding of how inflation narratives interact with the macroeconomy, especially inflation expectations, we first construct multiple multivariate VAR models to test for potential Granger causalities in our system. The VAR models include short-term and mid-term expectations, CPI inflation, economic activity and one of the measured narrative indices. Even tough the procedure is based on predictability, and not on direct causal effects, we follow Granger's argument that predictive power can serve as an indicator for potential causalities (Shojaie and Fox, 2022). Additionally, by applying the test procedure in a more restrictive VAR setting we control relevant information beyond a bivariate relationship. In a second step we take existing economic research into account that indicates strong variations of inflation expectations among different socioeconomic groups (e.g., European Central Bank (2021); Weber et al. (2022)). Further, pioneer survey studies suggest that the narratives of households are diverse and systematically related to individual characteristics (e.g., Andre et al. (2023); Demgensky and Fritsche (2023)). To address this variation, we analyze disaggregated household expectations based on income, education, age, and numeracy, employing data from the New York Fed Survey of Consumer Expectations. Afterwards, we reestimate our multivariate Granger causality tests by incorporating the expectations of subgroups (e.g. low income or high educated households) from each socioeconomic category to identify any potential Granger causal relationships.

3.3.1 Aggregated Expectations

As discussed in Chapter 2, we treat all variables as trend-cycle filtered series and use them as baseline estimates. For robustness, we provide level and difference estimations in the Online Appendix. The results of the baseline estimation are shown in table 3. It provides a comprehensive overview of all p-values of the Granger causality analysis, indicating whether or not a narrative is Granger-causing 1-year or 3-year expectations. Thus, we test whether the integration of a narrative lag into a system of lagged variables improves the prediction of the households' expectations. As the table shows, we report several significant Granger-causal relationships.

For the demand narratives, we report significant results exclusively for the government spending narrative at the aggregate level (medium-term). For short-term expectations, we identify Granger-causal relationships for the supply chain and labor shortage narratives. For medium-term expectations, thee relationships for the supply chain narrative persists, though only at the 10-percent level. Further Granger causality relationships are observed for miscellaneous narratives, including the war and profits narratives, for both short-term and medium-term expectations. In addition, we examine potential feedback relationships in table 4. We test the exogeneity of the narratives with respect to aggregate expectations. Among the previous Granger causalities, our estimation suggests a feedback relationship with 3-year expectations only for the energy and labor shortage narrative. We also find some reverse Granger causality for the demand (residual), energy, and supply (residual) narratives from 1-year expectations.

To ensure robustness, we provide additional level and difference estimations in the Online Appendix in Tables A.T.2 and A.T.3. Overall, the results for the supply chain

Narratives	One-Year Expectations (Pr(>F))	Three-Year Expectations (Pr(>F))
Demand		
Government Spending	0.29	0.09 *
Monetary Policy	0.64	0.23
Demand Shift	0.16	0.41
Demand (residual)	0.80	0.96
Supply		
Supply Chain	<0.01 ***	0.10 *
Energy	0.75	0.34
Labor Shortage	<0.01 ***	0.38
Supply (residual)	0.52	0.39
Miscellaneous		
Pandemic	0.39	0.23
Politics	0.57	0.95
War	0.04 **	0.04 **
Debt	0.11	0.86
Taxes	0.91	0.29
Profits	0.02 **	<0.01 ***
Note:	*.	p<0.1; **p<0.05; ***p<0.01

Table 3: Narrative → Expectations Granger causality (boosted HP-Filter)

and profits narratives using the boosted HP filter are confirmed by both robustness checks. Additionally, the difference estimation supports the findings for the government spending narrative, while the level does not. In contrast, the level estimates reveal more significant relationships. Unlike the trend-cycle filtered estimation, the level estimates indicate additional Granger causality for monetary policy, demand shift, supply residuals, debt, and politics on 3-year expectations. For the demand shift narrative, significant findings are observed for both short-term and medium-term expectations. In contrast, the differenced time series analysis reveals additional significant results only for the demand shift for short-term expectations.

At last, our results suggest that narratives featured in media reports possess inherent statistical predictive power for household expectations. This can be interpreted as an indicator of potential causalities Shojaie and Fox (2022). Moreover, our findings suggest that Granger causalities are present in all categories, but there are slight differences in the data between short-term and medium-term expectations. To address the challenge of potential nonstationarity, we consider results with three different estimation strategies. Although we find some differences between these estimations, most of the results, especially for short-term expectations, are confirmed. Moreover, correlative evidence from Andre et al. (2023) and Stantcheva (2024) backs our findings regarding how important supply and profit narratives are for 1-year expectations. In contrast to these survey studies, we do not report significant p-values for the politics, monetary policy,

and government spending narratives on aggregate expectations. This could be partly explained by the considered news source, which targets financial market actors and experts.

Narratives	One-Year Expectations (Pr(>F))	Three-Year Expectations (Pr(>F))
Demand		
Government Spending	0.56	0.85
Monetary Policy	0.64	0.54
Demand Shift	0.78	0.59
Demand (residual)	<0.01 ***	0.32
Supply		
Supply Chain	0.16	0.20
Energy	0.05 *	0.02 **
Labor Shortage	0.42	0.04 **
Supply (residual)	0.04 **	0.53
Miscellaneous		
Pandemic	0.12	0.30
Politics	0.89	0.97
War	0.93	0.75
Debt	0.41	0.89
Taxes	0.50	0.88
Profits	0.73	0.73
Note:	*.	p<0.1; **p<0.05; ***p<0.01

Table 4: Expectations → Narrative Granger causality (boosted HP-Filter)

3.3.2 Socioeconomic Heterogeneity

Heterogeneity by Income - We begin the discussion of socioeconomic heterogeneity by looking at differences in income. The New York Fed survey distinguishes three income groups: below \$50k, \$50k to \$100k, and above \$100k per year. The results in table A.T.4 in the Online Appendix show some differences between the considered groups. With respect to short-term expectations, our results suggest only small distinctions between the different income groups. The supply chain, labor shortage, war, and profit narratives are significant for all income groups. However, variations in the supply (residual) and demand shift narratives are observed: these are significant for low- and high-income households but not for middle-income households. In contrast, greater differences across income groups emerge for medium-term expectations. Our results highlight the importance of demand narratives for middle- and high-income households, while lower-income households show significant effects only for the energy and profits narratives. For 3-year expectations, middle-income households respond predominantly to demand narratives, with the exception of the supply (residual) narrative. In contrast,

high-income households exhibit multiple Granger causal relationships, encompassing demand, supply, and miscellaneous narratives.

Heterogeneity by Education - To access further potential heterogeneity of narratives across socioeconomic groups, we conduct Granger tests for different educational backgrounds of households. Accordingly, we consider the household groups with a high school degree or less, some college, and a BA or higher. The results are shown in table A.T.5 in the Online Appendix. The findings highlight the overall importance of the government spending, supply chain, war, and profits narratives, as reflected in the aggregated expectations analysis. However, households with high levels of education appear more responsive to narratives emphasizing demand shifts, supply chain issues and energy prices (both for medium-term expectations). While we observe a Granger causality from the war narrative to short-term expectations for households with some college degree or less, we do not confirm this for households with a BA or higher. Notably, a Granger causality for medium-term expectations of households with a high school degree or less is identified exclusively for the government spending narrative.

Heterogeneity by Age - Pronounced variations with respect to age are visible in A.T.6 in the Online Appendix. As before, we observe less heterogeneity across different ages for medium-term expectations than for short-term expectations. For the analysis, we consider three age groups: under 40, 40 to 59, and over 59. In general, demand narratives are more relevant for households aged 40 and older. Additionally, several supply narratives significantly influence short-term expectations for these households. In contrast, the youngest cohort shows the strongest Granger-causal relationships with miscellaneous narratives. In summary, this analysis supports the aggregated results while emphasizing the importance of age as a determinant of heterogeneity across households.

Heterogeneity by Numeracy - Finally, we examine potential heterogeneity between households with low and high numeracy in table A.T.7 in the Online Appendix. Overall, our analysis indicates no substantial differences between the two groups of households based on numeracy, aside from minor variations in the significance level of specific narratives. For Households with lower numeracy our analysis shows smaller significance levels for the war narrative, while for those with higher numeracy we observe smaller significance levels especially for the supply chain and labor shortage narratives.

3.3.3 Dynamic Responses

To further investigate potential causal relationships between our narratives and house-holds' expectations, we estimate impulse responses. This approach allows us to gain a more comprehensive understanding of the impact that an increasing diffusion of narratives has at the macroeconomic level. In the following section, we provide an overview of the impulse responses that we conducted by means of Jordà (2005)'s local projections. In this process, the impulse responses measure the effect of an impulse to the system, i.e. how an impulse at a specific point of time t_0 in one equation proceeds through a system (Kirchgässner and Wolters, 2007, 138). In this case, we consider a

shock the size of one standard deviation of the error term. We conduct several multivariate models that contain five different variables: 1-year and 3-year expected inflation by households, CPI inflation, economic activity, and one of our constructed narrative indices. Again, as mentioned in chapter 2.2, we treat all variables as trend-cycle filtered time series and use them as a baseline. For the robustness, we estimated the local projections with levels and differences. To ensure readability and an efficient use of the limited space, we included all graphical illustrations of the impulse responses in the Online Appendix. The complete set of baseline impulse responses are illustrated in figure A.F.7, A.F.8, A.F.9, and A.F.10 in the Online Appendix. Figure 7 reports a selection of significant responses. The x-axis represents the forecast horizon s, with a maximum of 12 months, while the y-axis shows the change in 1- or 3-year household expectations in response to a standardized deviation innovation. The black line represents the mean response to a shock, while the gray area around the line visualizes the 90% confidence interval.

We begin by examining the response to demand narrative shocks. In doing so, we observe statistically significant positive responses for all demand narratives. Comparatively, we note some differences in the paths and the magnitude of these responses. The shock in the government spending narrative is the longest lasting and with the largest magnitude. The response in the monetary policy narrative follows a similar path but on lower levels, while a shock in the demand shift narrative is only in initially significantly positive. Medium-term expectations react to a shock in the demand (residual) narrative after 6 months, but are largely not significant. These findings are consistent with the positive coefficients for the monetary policy and government spending narratives in Andre et al. (2023). The impulse responses for the supply chain narrative are in line with the discussion about its anchoring tendency in Andre et al. (2023) and Demgensky and Fritsche (2023). The response is short-lived and temporarily negative. While there is a primarily statistically insignificant reaction for the energy and supply (residual) narrative, the relevance of the supply chain and labor shortage narrative for household expectations is again highlighted. For the latter, the response is more profound, but also only lasting for up to 6 months. Finally, the ways in which the miscellaneous narratives react to a shock are more diverse, with a large number of responses being insignificant. We establish significant results for short-term expectations to a shock in the pandemic narrative, which are initially negative, before they turn positive over time. In contrast, a shock to the politics narrative seems to initially raise expectations, especially in the medium-term, and then return to the baseline. We do not report any significant responses to a shock in the debt or taxes narrative. Furthermore, the war narrative and the profits narrative should be emphasized. The profits narrative indicates positive responses in both expectations, which are also relatively strong in terms of magnitude, with a rather transient effect on 3-year expectations. The response to the war narrative is exceptional considering its strong decreasing tendency after an initial increase, following a reversed course to a shock in the pandemic narrative. Overall, the results are roughly in line with our previous findings and the results of the survey conducted by Andre et al. (2023); Stantcheva (2024); Demgensky and Fritsche (2023).

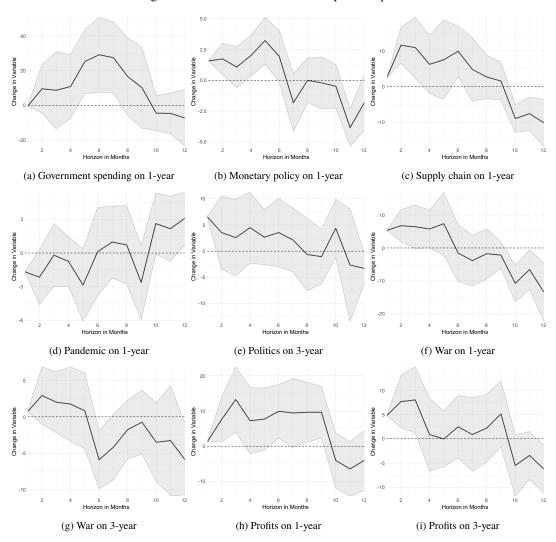


Figure 7: Selection of narratives' impulse responses

Note: The graphs show the mean responses and 90% confidence bands. The x-axis shows months (s) after narrative diffusion event; t = 0 is the month of the shock event. The y-axis shows the change in expectations as a response to the shock event. The shock considered is of the size of one standard deviation.

To summarize the analysis of aggregate expectations, it can be concluded that a (positive) narrative shock is followed by an initial positive response of households' expectations. At the same time, a closer look reveals differences in the paths of the responses. Comparing 1-year and 3-year expectations, the response in 1-year expectations is more pronounced in terms of magnitude and, in many cases, more persistent. The results also highlight some important differences between the narratives. While our results indicate significant positive responses for most demand and supply narratives, the responses of the latter are less persistent and in some cases across large parts insignificant for 3-year expectations, suggesting a stronger anchoring tendency of these narratives. On the other hand, the responses to a shock in the miscellaneous narratives are more diverse. Among these, the profits, war, and pandemic narrative stands out for their effects on short-term expectations.

As for the Granger causality tests, we provide robustness estimates again using

levels and differences. The results for the selected impulse responses from figure 7 are shown in the Online Appendix with level specification in figure A.F.11, and figure A.F.12 visualized the results with the differences. While the responses under level specification are more persistent, the responses with differences time series are more ambivalent and unstable. In general, the robustness estimations support our findings. However, for the pandemic narrative only, both robustness estimations indicate no significant reaction in household expectations. It should be noted, that the baseline estimation indicates an overall stronger anchoring tendency of expectations.

4 Conclusion

This paper proposes a new methodological approach to measure known inflation narratives in news reports. The combination of survey information on inflation narratives with a supervised topic model and a latent semantic scaling approach provides information on the prevalence and spread of narratives in a large text corpus, including the Wall Street Journal. For the recent inflationary period, our descriptive results highlight the presence of narratives about changing demand, supply factors including the supply chain, energy prices, and labor shortages, as well as stories about the war in Ukraine and corporate profits. Conversely, narratives about monetary policy, government debt, and the pandemic were prevalent in the preceding period of low inflation and deflation, respectively. To further investigate the relevance for macroeconomic development, additional time series analyses were conducted. As suggested by the multivariate Granger causality tests, the considered narratives contain relevant information for households' expectations. This is in line with the theoretical arguments presented in Shiller (2017); Tuckett et al. (2020) and Beckert (2016). While our estimates suggest only small differences between short- and medium-term aggregate expectations, we highlight heterogeneity across socioeconomic groups. We document notable differences in income, education, and age, especially for medium-term expectations. For example, our results imply that the energy and corporate profits narratives are the main drivers of 3-year expectations for households with lower annual incomes, while several narratives Granger-cause the expectations of high-income households. In addition, our analysis points to the importance of age as a driver of heterogeneity. To further investigate potential differences in the pathways of responses to narrative diffusion, we conduct impulse responses. Our estimates show that the responses to 1-year expectations are more pronounced and often more persistent. Moreover, when comparing shocks across narratives, we notice more anchored expectations with respect to a shock in the supply chain, demand shift, and profits narratives.

In summary, our paper reveals the powerful role that media narratives play in shaping economic expectations, potentially anchoring or unanchoring inflation expectations over time. This impact varies by narrative type and socioeconomic backgrounds of households, making it particularly relevant for monetary policymakers, who may pay even more attention to media coverage. By recognizing the diverse impact of these narratives, policymakers can develop more targeted communication strategies. Future advances in narrative analysis hold the promise of enabling even more responsive and adaptable policy interventions, aligned with the evolving narratives captured in media.

References

- **Adämmer, Philipp**, "lpirfs: An R package to estimate impulse response functions by local projections," *The R Journal* (2019), 2019, 11 (2), 421–438.
- Andre, Peter, Ingar Haaland, Christopher Roth, and Johannes Wohlfahrt, "Narratives about the Macroeconomy," Working Paper 2023.
- Bachmann, Oliver, Klaus Gründler, Niklas Potrafke, and Ruben Seiberlich, "Partisan bias in inflation expectations," *Public Choice*, 2021, *186*, 513–536.
- **Bachmann, Rüdiger, Tim O. Berg, and Eric R. Sims**, "Inflation Expectations and Readiness to Spend: Cross-Sectional Evidence," *American Economic Journal: Economic Policy*, 2015, 7 (1), 1–35.
- **Beckert, Jens**, *Imagined Futures*. *Fictional Expectations and Capitalist Dynamics*, Cambridge, MA: Harvard University Press, 2016.
- _ and Richard Bronk, "An Introduction to Uncertain Futures," in "Uncertain Futures: Imaginaries, Narratives, and Calculation in the Economy," Oxford: Oxford University Press, 2018, pp. 1–36.
- **Blanchard, Olivier J and Ben S Bernanke**, "What Caused the US Pandemic-Era Inflation?," Working Paper 31417, National Bureau of Economic Research June 2023.
- **Blei, David M., Andrew Y. Ng, and Michael I. Jordan**, "Latent dirichlet allocation," *Journal of machine Learning research*, 2003, 3, 993–1022.
- **Board of Governors of the Federal Reserve System**, "Implementation Note issued July 31, 2019," https://www.federalreserve.gov/newsevents/pressreleases/monetary20190731a1.htm 2019. Retrieved on October 1, 2024.
- **Boyd-Graber, Jordan, David Mimno, and David Newman**, Care and Feeding of Topic Models: Problems, Diagnostics, and Improvements CRC Handbooks of Modern Statistical Methods, Boca Raton, Florida: CRC Press, 2014.
- **Burch, Susan W. and Diane Werneke**, "The Stock of Consumer Durables, Inflation, and Personal Saving Decisions," *The Review of Economics and Statistics*, 1975, 57 (2), 141–154.
- **Burke, Mary A. and Ali Ozdagli**, "Household Inflation Expectations and Consumer Spending: Evidence from Panel Data," *The Review of Economics and Statistics*, 07 2023, *105* (4), 948–961.
- **Carroll, Christopher D.**, "Macroeconomic Expectations of Households and Professional Forecasters," *The Quarterly Journal of Economics*, 2003, 118 (1), 269–298.
- _ , "The Epidemiology of Macroeconomic Expectations," in "The Economy as an Evolving Complex System, III: Current Perspectives and Future Directions," Oxford University Press, 10 2005.

- Cavallo, Alberto, Guillermo Cruces, and Ricardo Perez-Truglia, "Inflation Expectations, Learning, and Supermarket Prices: Evidence from Survey Experiments," *American Economic Journal: Macroeconomics*, 2017, 9 (3), 1–35.
- **Coibion, Olivier and Yuriy Gorodnichenko**, "What Can Survey Forecasts Tell Us about Information Rigidities?," *Journal of Political Economy*, 2012, 120 (1), 116–159.
- **D'Acunto, Francesco, Daniel Hoang, Maritta Paloviita, and Michael Weber**, "Cognitive Abilities and Inflation Expectations," *AEA Papers and Proceedings*, 2019a, 109, 562–566.
- __, Ulrike Malmendier, and Michael Weber, "Chapter 5 What do the data tell us about inflation expectations?," in Rüdiger Bachmann, Giorgio Topa, and Wilbert van der Klaauw, eds., *Handbook of Economic Expectations*, Academic Press, 2023, pp. 133–161.
- **Demgensky, Lisa and Ulrich Fritsche**, "Narratives on the causes of inflation in Germany: First results of a pilot study," WiSo-HH Working Paper Series 77, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory 2023.
- **Dräger, Lena and Giang Nghiem**, "Are Consumers' Spending Decisions in Line with A Euler Equation?," *The Review of Economics and Statistics*, 07 2021, *103* (3), 580–596.
- _ , **Michael J. Lamla, and Damjan Pfajfar**, "Are survey expectations theoryconsistent? The role of central bank communication and news," *European Economic Review*, jun 2016, 85, 84–111.
- **Duca-Radu, Iona, Geoff Kenny, and Andreas Reuter**, "Inflation expectations, consumption and the lower bound: Micro evidence from a large multi-country survey," *Journal of Monetary Economics*, 2021, 118, 120–134.
- **Döpke, Jörg, Jonas Dovern, Ulrich Fritsche, and Jiri Slacalek**, "Sticky Information Phillips Curves: European Evidence," *Journal of Money, Credit and Banking*, October 2008, 40 (7), 1513–1520.
- __, __, __, and __, "The Dynamics of European Inflation Expectations," *The B.E. Journal of Macroeconomics*, March 2008, 8 (1), 1–23.
- **D'Acunto, Francesco, Daniel Hoang, and Michael Weber**, "Managing Households' Expectations with Unconventional Policies," *The Review of Financial Studies*, 07 2021, 35 (4), 1597–1642.
- _ , Ulrike Malmendier, and Michael Weber, "Gender roles produce divergent economic expectations," *Proceedings of the National Academy of Sciences*, 2021, 118 (21), 1–10.

- Eliaz, Kfir and Ran Spiegler, "A Model of Competing Narratives," *American Economic Review*, 2020, 110 (12), 3786–3816.
- _ , Simone Galperti, and Ran Spiegler, "False Narratives and Political Mobilization," 2022.
- Elliott, Graham, Thomas Rothenberg, and James Stock, "Efficient Tests for an Autoregressive Unit Root," Technical Report t0130, National Bureau of Economic Research, Cambridge, MA December 1992.
- Eshima, Shusei, Kosuke Imai, and Tomoya Sasaki, "Keyword Assisted Topic Models," Working Paper 2020.
- **European Central Bank**, "An overview of the ECB's monetary policy strategy.," July 2021.
- **Evans, George W. and Seppo Honkapohja**, *Learning and Expectations in Macroe-conomics*, Princeton University Press, dec 2001.
- **Fuster, Andreas, David Laibson, and Brock Mendel**, "Natural Expectations and Macroeconomic Fluctuations," *Journal of Economic Perspectives*, 2010, 24 (4), 67–84.
- **Gabaix, Xavier**, "A Sparsity-Based Model of Bounded Rationality," *The Quarterly Journal of Economics*, 2014, *129* (4), 1661–1710.
- **Gennaioli, Nicola and Andrei Shleifer**, "What Comes to Mind," *The Quarterly Journal of Economics*, 2010, *125* (4), 1399–1433.
- **Grimmer, Justin, Margaret E Roberts, and Brandon M Stewart**, *Text as data: A new framework for machine learning and the social sciences*, Princeton University Press, 2022.
- **Hamilton, James D.**, "Why You Should Never Use the Hodrick-Prescott Filter," *The Review of Economics and Statistics*, December 2018, *100* (5), 831–843.
- **Hodrick, Robert J. and Edward C. Prescott**, "Postwar U.S. Business Cycles: An Empirical Investigation," *Journal of Money, Credit and Banking*, February 1997, 29 (1), 1.
- **Hong, Yongmiao, Fuwei Jiang, Lingchao Meng, and Bowen Xue**, "Forecasting Inflation with Economic Narratives and Machine Learning," *Available at SSRN* 4175749, 2022.
- **Honnibal, Matthew and Ines Montani**, "spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing," 2017.

- Hyndman, Rob, George Athanasopoulos, Christoph Bergmeir, Gabriel Caceres, Leanne Chhay, Mitchell O'Hara-Wild, Fotios Petropoulos, Slava Razbash, Earo Wang, and Farah Yasmeen, forecast: Forecasting functions for time series and linear models 2022. R package version 8.17.0.
- **Johnson, Samuel G. B., Avri Bilovich, and David Tuckett**, "Conviction Narrative Theory: A theory of choice under radical uncertainty," *Behavioral and Brain Sciences*, 2023, 46, e82.
- **Jordà, Oscar**, "Estimation and Inference of Impulse Responses by Local Projections," *American Economic Review*, 2005, 95 (1), 161–182.
- **Juster, F. Thomas and Paul Wachtel**, "Inflation and the Consumer," *Brookings Papers on Economic Activity*, 1972, *3* (1), 71–122.
- **Kirchgässner, Gebhard and Jürgen Wolters**, *Introduction to Modern Time Series Analysis*, Berlin: Springer, 2007.
- Krugman, Paul R., Kathryn M. Dominquez, and Kenneth Rogoff, "It's Baaack: Japan's Slump and the Return of the Liquidity Trap," *Brookings Papers on Economic Activity*, 1998, *1998* (2), 137–205.
- Larsen, Vegard H. and Leif Anders Thorsrud, "Business Cycle Narratives," 2019.
- **Lorenzoni, Guido and Iván Werning**, "Inflation is Conflict," Working Paper 31099, National Bureau of Economic Research April 2023.
- **Lucas, Robert E.**, "Expectations and the neutrality of money," *Journal of Economic Theory*, 1972, 4 (2), 103–124.
- _ and Thomas J. Sargent, "After Keynesian macroeconomics," Federal Reserve Bank of Minneapolis Quarterly Review, 1979, 3 (2).
- **Lütkepohl, Helmut**, New Introduction to Multiple Time Series Analysis, Berlin: Springer, 2005.
- **Macaulay, Alistair and Wenting Song**, "Narrative-Driven Fluctuations in Sentiment: Evidence Linking Traditional and Social Media," *SSRN Electronic Journal*, 2022.
- Mankiw, N. Gregory and Ricardo Reis, "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," *The Quarterly Journal of Economics*, 2002, 117 (4), 1295–1328.
- Müller, Henrik, Tobias Schmidt, Jonas Rieger, Lena Marie Hufnagel, and Nico Hornig, "A German inflation narrative: How the media frame price dynamics: Results from a RollingLDA analysis," DoCMA Working Paper 9, Dortmund 2022.
- **Muth, John F.**, "Rational Expectations and the Theory of Price Movements," *Econometrica*, 1961, 29 (3), 315–335.

- **Pearl, Judea**, *Causality: Models, reasoning, and inference*, 2 ed., Cambridge: Cambridge University Press, 2009.
- **Phillips, Peter C. B. and Sainan Jin**, "BUSINESS CYCLES, TREND ELIMINATION, AND THE HP FILTER," *International Economic Review*, May 2021, 62 (2), 469–520.
- and Zhentao Shi, "BOOSTING: WHY YOU CAN USE THE HP FILTER," International Economic Review, May 2021, 62 (2), 521–570.
- **Plagborg-Møller, Mikkel and Christian K. Wolf**, "Local Projections and VARs Estimate the Same Impulse Responses," *Econometrica*, 2021, 89 (2), 955–980.
- **Powell, Jerome**, "Transcript of Chair Powell's Press Conference, September 22, 2021," September 2021.
- **R Core Team**, *R: A Language and Environment for Statistical Computing* R Foundation for Statistical Computing 2022.
- **Reis, Ricardo**, "The Burst of High Inflation in 2021-22: How and Why Did We Get Here?," 2022.
- Romer, David, Advanced Macroeconomics, 4 ed., New York: McGraw-Hill, 2012.
- **Roos, Michael and Matthias Reccius**, "Narratives in economics," *Journal of Economic Surveys*, 2024, 38 (2), 303–341.
- **Rossum, Guido Van and Fred L. Drake**, *Python 3 Reference Manual*, Scotts Valley, CA: CreateSpace, 2009.
- Selivanov, Dmitriy, Manuel Bickel, and Qing Wang, text2vec: Modern Text Mining Framework for R 2022. R package version 0.6.3.
- **Shiller, Robert J.**, "Why Do People Dislike Inflation?," in Christina D. Romer and David H. Romer, eds., *Reducing Inflation: Motivation and Strategy*, University of Chicago Press, 1997, pp. 13–70.
- _, "Narrative Economics," *The American Economic Review*, 2017, 107 (4), 967–1004.
- _ , Narrative Economics: How Stories Go Viral & Drive Major Economic Events, Princeton: Princeton University Press, 2019.
- _ and George A. Akerlof, Animal Spirits: How Human Psychology Drives the Economy, and Why it Matters for Global Capitalism, Princeton and Oxford: Princeton University Press, 2009.
- **Shojaie, Ali and Emily B. Fox**, "Granger Causality: A Review and Recent Advances," *Annual Review of Statistics and Its Application*, 2022, 9 (Volume 9, 2022), 289–319.
- **Sims, Christopher A.**, "Macroeconomics and Reality," *Econometrica*, 1980, 48 (1), 1–48.

- **Sjoberg, David**, ggstream: Create Streamplots in 'ggplot2' 2021. R package version 0.1.0.
- **Stantcheva, Stefanie**, "Why Do We Dislike Inflation?," Technical Report w32300, National Bureau of Economic Research, Cambridge, MA April 2024.
- **Ter Ellen, Saskia, Vegard H. Larsen, and Leif Anders Thorsrud**, "Narrative Monetary Policy Surprises and the Media," *Journal of Money, Credit and Banking*, August 2022, *54* (5), 1525–1549.
- **Tuckett, David and Milena Nikolic**, "The role of conviction and narrative in decision-making under radical uncertainty," *Theory & psychology*, 2017, 27 (4), 501–523.
- _ , **Douglas Holmes, Alice Pearson, and Graem Chaplin**, "Monetary Policy and the Management of Uncertainty: A Narrative Approach," *Bank of England Working Paper*, 2020, (870).
- **Vellekoop, Nathanael and Mirko Wiederholt**, "Inflation Expectations and Choices of Households," 2019.
- **Watanabe, Kohei**, "Latent Semantic Scaling: A Semisupervised Text Analysis Technique for New Domains and Languages," *Communication Methods and Measures*, 2021, 15 (2), 81–102.
- _ , LSX: Semi-Supervised Algorithm for Document Scaling 2023. R package version 1.3.2.
- **Weber, Isabella M. and Evan Wasner**, "Sellers' inflation, profits and conflict: why can large firms hike prices in an emergency?," *Review of Keynesian Economics*, 2023, 11 (2), 183 213.
- Weber, Michael, Francesco D'Acunto, Yuriy Gorodnichenko, and Olivier Coibion, "The Subjective Inflation Expectations of Households and Firms: Measurement, Determinants, and Implications," *Journal of Economic Perspectives*, August 2022, 36 (3), 157–84.
- Werning, Iván, "Expectations and the Rate of Inflation," Working Paper 30260, National Bureau of Economic Research July 2022.
- **Woodford, Michael**, "Imperfect Common Knowledge and the Effects of Monetary Policy," Working Paper 8673, National Bureau of Economic Research 2001.
- **Wooldridge, Jeffrey M.**, *Introductory Econometrics: A Modern Approach*, 5th ed. ed., South-Western, 2013.