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Abstract 

A reflection on the lackluster growth over the decade since the Global Financial Crisis has renewed 

interest in preventative measures for a long-standing problem. Advances in machine learning 

algorithms during this period present promising forecasting solutions. In this context, the paper 

develops new forecasting methods for an old problem by employing 13 machine learning algorithms 

to study 147 year of systemic financial crises across 17 countries. It entails 12 leading indicators 

comprising real, banking and external sectors. Four modelling dimensions encompassing a 

contemporaneous pooled format through an expanding window, transformations with a lag structure 

and 20-year rolling window as well as individual format are implemented to assess performance 

through recursive out-of-sample forecasts. Findings suggest fixed capital formation is the most 

important variable. GDP per capita and consumer inflation have increased in prominence whereas 

debt-to-GDP, stock market and consumption were dominant at the turn of the 20th century. Through a 

lag structure, banking sector predictors on average describe 28 percent of the variation in crisis 

prevalence, real sector 64 percent and external sector 8 percent. A lag structure and rolling window 

both improve on optimised contemporaneous and individual country formats. Nearly half of all 

algorithms reach peak performance through a lag structure. As measured through AUC, 𝐹ଵ and Brier 

scores, top performing machine learning methods consistently produce high accuracy rates, with both 

random forests and gradient boosting in front with 77 percent correct forecasts. Top models contribute 

added value above 20 percentage points in most instances and deals with a high degree of complexity 

across several countries.  

JEL Classification: C14, C15, C32, C35, C53, E37, E44, G21 

Keywords: machine learning, systemic financial crises, leading indicators, forecasting, early 
warning signal 
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1. Introduction 

A decade after the Global Financial Crisis, its remnants are vividly illustrated by the lackluster 

pace of economic activity hampering progress in several advanced and developing countries. 

While financial crises have occurred periodically over centuries (Reinhart and Rogoff, 2009), 

the consequential high social, economic, and political costs (Chen et al., 2019; Funke et al., 

2016; Laeven and Valencia, 2010; and Laeven and Valencia, 2018) necessitate an improved 

preventative framework to mitigate the next financial catastrophe. Recent advances in artificial 

intelligence in general and machine learning in particular present innovate approaches to revisit 

forecasting performance of financial crises and assess its contribution to the literature on 

preventative frameworks. A salient benefit of machine learning comprises its ability to 

accommodate non-linear interactions between crisis variables, which is useful as crises can 

have different precursors and during a volatile environment, crisis indicators generally fail to 

exhibit a linear trajectory. Another advantage is that machine learning methods are able to 

surface leading indicators. For policymakers, it is both a practical and straightforward approach 

given its proliferation across statistical programmes. In comparison to traditional 

macroeconomic tools such as probit or logit models, machine learning approaches have 

improved on forecasting performance (Alessi et al., 2015; Casabianca et al., 2019; Davis et al., 

2011; Döpke et al., 2017; Fouliard et al., 2019). Yet, the applications of machine learning 

algorithms to study financial crises remain limited. 

As new methods for an old problem, 13 machine learning models are developed to 

scrutinize systemic financial crises. Serving as a conventional non-parametric method, a 

baseline model is implemented. Commonly used linear and binomial regression models are 

compared to non-linear models. K-nearest neighbours and support vector machine are instance-

based algorithms where the former classifies new observations according to the closest located 

known value in a dataset, and the latter applies kernels to enlarge the feature space to allow for 

non-linear relationships. As regularization algorithms, ridge and lasso reduce the contribution 

of less significant coefficients down to zero. Decision tree algorithms full tree and pruned tree 

are implemented given their ability to analyse large datasets, operate with missing values, and 

absent a predefined functional form, allow non-linear relationships, support interactions 

between variables and the identification of leading indicators. As a specific dimension 

reduction method, partial least squares approximate new features to the original features in the 

dataset, and given its relation to the outcome variable, explicate the outcome and predictors. 

Ensemble algorithms incorporate a set of weak learners to collectively construct a strong 
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learner, with the aim of enhancing the performance of a single forecast. This process involves 

training multiple models with the same algorithm. Two standard methods encompass bagging, 

featuring random forests and boosting, comprising adaptive boosting and gradient boosting. 

While both algorithmic approaches generate new data through sampling by replacement, 

procedurally there are two key distinctions. First, trees are formed in parallel in the bagging 

process, but sequentially for boosting. Second, bagging estimates strong learners using simple 

average across all the prediction trees, while boosting applies weighted average or learning 

rates.  

Machine learning and forecasting algorithms frequently encounter a bias-variance 

trade-off. Accordingly, while reducing bias through a close fit to an existing dataset, it comes 

at the cost of higher variation when applied to a new dataset. 

This paper studies 147 years of systemic financial crises, comprising a total of 17 

present-day advanced economies which experienced a combined 90 crises between 1870 and 

2016. Based on literature findings, this study features a vector of 12 leading indicators, 

encompassing real, banking and external sectors. In scrutinizing antecedents to financial crises, 

the relationships between these sectors are recurrently underscored in economic literature 

including Kindleberger (1978), González-Hermosillo et al. (1997), Hardy and Pazarbasioglu 

(1998), Kaminsky and Reinhart (1999), Reinhart and Rogoff (2009), Claessens et al. (2011). 

Real sector variables encompass gross domestic product per capita, consumption expenditure, 

fixed capital formation and capital output ratio, while banking sector indicators include total 

loans, debt, short-term and long-term interest rates, inflation and stock market, whereas 

external sector factors comprise exchange rates and current account balance.  

Across four modelling dimensions, predictive strength of machine learning methods is 

assessed. These dimensions entail a contemporaneous pooled format with an expanding 

window, transformations with lag structure and a rolling window as well as in individual 

format. Across recursive out-of-sample performance, assessed measures include AUC, 𝐹1 and 

Brier scores. Findings suggest that an expanding window with lag structure and rolling window 

generally improve on both the optimized contemporaneous and individual country formats. Six 

of the 13 algorithms reach highest accuracy through the lag structure. Top performing machine 

learning methods consistently produce high accuracy rates, on average above 70 percent for all 

derivates of the contemporaneous pooled format and frequently feature random forests and 

gradient boosting. Compared to a non-parametric baseline, all top models add accuracy value, 

above 20 percentage points for several countries. A measure of complexity underscores that 
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the models encountered a majority of complicated forecasting environments, holding both in 

contemporaneous pooled and individual formats. 

In an analysis of important variables, fixed capital formation has the largest influence. 

GDP per capita and consumer inflation have risen in prominence over the last century, while 

debt-to-GDP, stock market and consumption expenditure had the highest influence at the turn 

of the 20th century. According to the lag structure, banking sector variables on average 

constitute 28 percent of the variation in crisis prevalence, real sector 64 percent and external 

sector 8 percent over the full period. 

The structure of the paper is as follows. Section 2 provides an overview of the empirical 

literature. Section 3 describes the machine learning methodology. Section 4 highlights the data 

and variable selection and section 5 evaluates the findings. Section 6 concludes. 

2. Empirical Literature 

In recent years, the adoption of machine learning methods has proliferated given its processing 

ability to analyse Big Data, and deal with non-linear interactions between variables, both vital 

to identify the most important indicators and account for different precursors to crises. 

Furthermore, the evolution and central aim in the development of machine learning algorithms 

are found predominantly in out-of-sample forecasting performance. Estimation of pivotal 

tipping points presents another key benefit. Widespread inclusion of numerous algorithms in 

statistical programmes further broadens the utilisation of innovative methods. Yet, one 

drawback involves the inability of algorithms to compute marginal contributions of each 

predictor or confidence intervals for threshold levels (Joy et al., 2017).  

Advanced by Breiman et al. (1984), classification and regression trees (CART) 

represent a prevailing set of machine learning techniques to study financial crises. Using binary 

recursive trees for currency crises during the period 1987 and 1999, Ghosh and Ghosh (2003) 

identify macroeconomic imbalances, high debt-equity ratios of organisations and weak 

governing institutions as key contributory factors. Analysing balance of payment crises from 

1994 to 2005, Chamon et al. (2007) underscore the significance of international reserves, 

current account balance, short-term external debt, reserve cover, external indebtedness, and 

gross domestic product. Examining sovereign debt crises of emerging markets between 1970 

and 2002, Manasse and Roubini (2009) highlight liquidity, solvency and macroeconomic 

imbalances, subsequently corroborated in an analogous investigation by Savona and Vezzoli 
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(2012), that further reveals the effects of contagion as key indicators. A shortfall of the CART 

approach is an intrinsic insensitivity to cross-sectional and time series features (Joy et al. 2017). 

Surveying banking crises across a large group of countries during the period 1979 to 

2003, Davis and Karim (2008), find domestic credit growth as most important predictor. 

Dattagupta and Cashin (2011) study crises in emerging markets between 1990 and 2005 and 

reveal the relevance of elevated inflation, severe currency depreciation and lackluster bank 

profitability. Spanning 20 countries in Asia and Latin America, Davis et al. (2011) compare 

the CART approach to a logistic regression. While varying by region, early warning predictors 

for Asian countries include national budget deficit and low domestic growth, and for Latin 

American countries involve currency depreciation and banking credit. Expanding on the 

generalized CART methodology in studying episodes of systemic risk, Alessi and Detken 

(2018) highlight random forests to be reliable in its identification of leading signals. Employing 

CART and random forests to scrutinise 36 advanced countries during the period 1970 to 2010, 

Joy at al. (2017) find tight interest rate spreads and inverted yield curves are leading predictors 

in the short-term, with house prices significant over the long term. Across a horse race 

involving nine forecasting models on 27 EU countries, Alessi et al. (2015) underscore high 

predictive strength of CART and random forests in comparison to probit and logit models, a 

signals and Bayesian model averaging approach. CART reveal a narrow yield curve, elevated 

money market rates and low bank profitability as precursors, yet for random forests, house 

price valuation constitutes the most significant factor, across short and long prediction 

horisons. Bank credit, government debt, long term yield and frail macroeconomic variables 

also serve as early warning signals. In another extension of the CART methodology, 

Casabianca et al. (2019) find adaptive boosting to outperform a logistic regression in 

forecasting financial crises between 1970 and 2017. Du Plessis (2022) highlight gradient 

boosting outperforming multiple outcome models including several machine learning models 

in crisis predictions. Fouliard et al. (2019) show decision-trees to outperform a regression 

model between 1985 and 2018, while Beutel et al. (2018) observe an opposite result. Ward 

(2017) and Bluwstein et al. (2020) make use of machine learning models to predict financial 

crises using the Macrohistory Database, underscoring improved out-of-sample performance. 

3. Empirical Methods 

This paper develops 13 machine learning models, all classified under the domain of supervised 

learning as it involves scrutinising a function that is mapping inputs to outputs based on a 
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training dataset. According to this process, algorithms search for crisis signals, informed by 

threshold values and rules that increase the likelihood of an event. As a result, machine learning 

fits as a combination of a non-parametric and parametric approach. The models in this paper 

include a non-parametric technique, regression algorithms, instance-based, regularisation and 

dimensionality reduction procedures, as well as decision tree methods and ensemble 

algorithms. Forecasting efficacy of these machine learning models is assessed through its 

performance on a test dataset of various dimensions. Descriptions of the methodologies and 

hyperparameter implementations feature in Section A (Appendix). 

3.1 Benchmark Algorithms 

To allow testing across a broad spectrum of models, simple to more complex algorithms are 

developed and employed. Serving as benchmark, a non-parametric model includes a baseline 

approach in the form of a conditional mean estimation whereas regression algorithms constitute 

a linear probability model and probit model. These modelling techniques are frequently utilised 

in forecasting financial distress. Formulations of the methods are discussed in Section A 

(Appendix).  

3.1 Instance-Based Algorithms 

Instance-based algorithms comprise k-nearest neighbours and support vector machine. 

Advanced by Cover and Hart (1967), the k-nearest neighbours (k-NN) algorithm involves the 

estimation of the conditional distribution of Y given X in order to categorise an observation 

according to the outcome class with highest estimated probability. Developed by Boser, Guyon 

and Vapnik (1992), the support vector machine (SVM) improves on the constraint of linear 

classifiers by accommodating non-linear relationships including quadratic and cubic terms. 

Achieved by employing kernels to enlarge the feature space of the predictors, the technique 

further improves computational efficiency as it does not explicitly execute in the enlarged 

feature space, but implicitly through its internal products of observations. 

3.2 Regularisation Algorithms 

Through a regularising procedure, coefficients of less relevant predictors shrink towards zero. 

Two algorithms feature in this paper, namely ridge and lasso.  

The ridge procedure was developed and extended by Tikhonov (1943, 1963), Foster 

(1961), Phillips (1962) and Hoerl (1962). In contrast to the ordinary least squares statistical 
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technique which computes 𝛽଴, 𝛽ଵ, … , 𝛽௣ by employing values which minimizes the residual 

sum of squared equation, ridge applies tuning parameter 𝜆 ≥  0, where the shrinkage penalty 

is small when 𝛽ଵ, … , 𝛽௣ are near zero, so it reduces the estimates of 𝛽௝ towards zero. 

Analogous to ridge, lasso reduces the estimated coefficients of explanatory variables 

towards zero, but the penalty component forces some of the coefficients exactly to zero when 

the tuning parameter 𝜆 is adequately large. Through this procedure, lasso operates a variable 

selection technique and enhances interpretability of the model output, eventually also ensuring 

sparse models, which is an advantage in addressing variable correlation in the model. 

Furthermore, cross-validation is likewise integrated to estimate the optimal level of 𝜆 (James 

at al., 2013). 

3.3 Dimensionality Reduction Algorithms 

Introduced by Wold (1985), partial least squares regression (PLS) serves as dimension 

reduction method by detecting a new set of features 𝑍ଵ, … , 𝑍௠ which are linear combinations 

of the initial features, and subsequently fitting a linear model using least squares. As PLS 

identify new features which approximate the original features that are associated with the 

outcome variable Y, it explicates the outcome and explanatory indicators (James at al. 2013). 

3.4 Decision Tree Algorithms 

3.4.1 Full Tree 

Based on the seminal work of Breiman et al. (1984), the implementation of classification and 

regression trees (CART) accentuate several advantages. By following a semi-parametric 

framework, CART is not constrained by a predetermined functional form and can process 

various dimensions of data. Moreover, the method is suited to handle large and heterogenous 

datasets such as Big Data and can accommodate numerous predictors and operate with missing 

values. CART allow non-linear relationships, implement threshold levels and support 

interactions between variables. Resultantly, relationships between predictors could fluctuate 

given cross-sectional and time dimensions. By analysing all data observations, specification 

errors are minimized. Relevant to crisis literature, CART rank predictors according to their 

level of importance, thereby rendering leading indicators. Indeed, classification and regression 

trees are straightforward to interpret and a practical instrument for policymakers.  
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However, classification and regression trees encounter some limitations. As 

classification trees are predisposed to overfitting it could impact the accuracy of out-of-sample 

forecasts. Yet, it can be addressed through pruning, a technique that reduces branches of trees. 

Accordingly, during each iteration the model condenses the amount of data analysed from the 

full sample, which results in a local rather than global optimal. In comparison to regression 

models, as probability distributions are not operationalised, confidence intervals cannot be 

computed. Given that an individual probability value is allocated to all observations within a 

categorised set, marginal contributions of the explanatory variables are not estimated, even 

though the variation in probability of surpassing threshold levels is computed at each node. 

Finally, the ranking of variables could result in essential predictors being excluded from the 

final tree (Joy et al., 2017).  

CART implement a top-down approach to partition data recursively, involving several 

predictors. Originally, through a partition with one predictor, a parent node is formed. 

Subsequently, divided into two homogenous child nodes, which are based on the discrete 

outcomes of the dependent variable, in this instance a systemic financial crisis or no-crisis. For 

every division, the algorithm chooses an optimal threshold value of the predictor. Child nodes 

are continually divided through this procedure until reaching a terminal node, which signify 

the final partitioning of data. This process can graphically be plotted as a decision tree. A 

forecasting model is computed as based on the decision path of each terminal node. Resultantly, 

this method analyses several divisions of predictors and selects those splits which best classify 

crisis and no-crisis episodes.  

3.4.2 Pruned Tree 

A shortfall of the full tree approach is the manifestation of over-fitting as all observations are 

considered. To lessen misclassification, pruning is employed as a general enhancement to the 

algorithmic framework. Centrally, pruning shrinks the size of a decision tree by transforming 

unreliable branch nodes into leaf nodes, and consequently by eliminating leaf nodes. 

Contextually, and according to the bias-variance trade-off, classification trees could fit the 

training data satisfactorily, yet become less accurate with new testing data.  

3.5 Ensemble Algorithms 

Ensemble algorithms operationalise a cohort of weak learners to jointly construct a strong 

learner, with the goal of improving on the performance of an individual forecast. This is 
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accomplished through a multi-classifiers approach, involving the training of multiple models 

using an identical algorithm. To lessen variance and bias, two prominent modelling 

frameworks comprise bagging and boosting. While both modelling approaches produce new 

data in the training environment through sampling by replacement, bagging assigns the same 

probability of replacements while boosting apportions weights, which thereby modifies 

replacement probabilities. In contrast, trees are formed independently and in parallel within the 

bagging process, but sequentially for boosting, the latter in order to enhance error rates by 

penalising misclassified observations or through shrinking a loss function. Strong learners are 

determined using simple average across every prediction tree for bagging, while in comparison, 

in the case of boosting, the weighted average is slanted towards better learners or inclusion of 

learning rates (Brownlee, 2016; James et al., 2013). 

In this paper, two boosting algorithms are employed, namely adaptive boosting and 

gradient boosting, while the bagging algorithm is random forests. 

3.5.1 Adaptive Boosting 

Developed by Freund and Schapire (1997), adaptive boosting or adaboost represent one of the 

initial boosting algorithms. Distinctively, while classification and regression trees construct 

full trees on all observations, adaboost only builds stumps or weak learners. The error value 

obtained from one stump affects thereafter how the following stump is assembled based on a 

bootstrap sampling with replacement procedure. Each stump is also assigned a weight given 

its computed prediction error, which further denotes its contribution to the strong learner.  

3.5.2 Gradient Boosting 

As an extension of the adaboost approach, Friedman (2001) devises a boosting variation by 

employing a gradient descent procedure for regression and classification trees through a 

stepwise technique which solves for a loss function. Through this process, pseudo residuals are 

estimated to optimise every weak or base learner in a consecutive manner. The quantity of 

weak learners can be stipulated in the context of the bias-variance trade-off, with the aim of 

identifying the optimal quantum. Increasing the number of weak learners would lessen the bias 

as the model tracks the training data narrowly, but variance surges in the context of a noise 

factor, leading to reduced forecasting accuracy when new data is presented. Selecting fewer 

weak learners could result in higher bias, but a reduced probability of overfitting. A shrinkage 

parameter governs the learning rate of a weak learner, where a smaller value necessitates more 
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iterations to optimise and develop the final model (James et al., 2013).  

3.5.3 Random Forests 

Advanced by Breiman, (1984, 2001), random forests (RF) employ a group of weak learners to 

jointly create a strong learner, a process centred on bootstrapping and aggregation to enhance 

stability and accuracy. Executed in conjunction with a bagging procedure, a large quantum of 

regression trees is created through bootstrapped samples with replacements, obtained from the 

initial training sample. Nodes of trees are created based on a random selection of explanatory 

variables as well as the most optimal split amongst the predictors. Given that each tree renders 

a prediction, these predictions are averaged to calculate the final prediction.  

A benefit of employing a large quantity of trees created from independent bootstrapped 

samples, comprises diminishing variance without increasing bias (Nyman and Ormerod, 2016). 

RF address the overfitting phenomenon of classification and regression trees by not processing 

all explanatory variables simultaneously, but by opting for the most important variables 

through majority votes and further only integrating the selected variables into the algorithm 

(Breiman et al., 1984). In contrast to individual trees, variable importance classifications of RF 

are more robust (Joy et al., 2017). Analogous to classification and regression trees, RF can 

process sizeable datasets, are not sensitive to outliers, model interactions between explanatory 

variables and are not limited by distributional assumptions.  

Random forests algorithm permits optimisation through stipulation of tree complexity 

or depth, quantity of variables featuring in each tree, bootstrap sample size and the quantum of 

trees (Mullainathan and Spiess, 2017). Drawbacks of the approach comprise an inability to 

backwardly deduce interaction effects between variables due to the simple average procedure 

employed across a large number of decision trees (Joy et al., 2017), and a somewhat opaque 

framework given an algorithmic process executing across a multiplicity of bootstrap samples. 

Robust in-sample performance is intermittently not repeated with the addition of unseen 

observations (Alessi et al., 2015). 

4. Data and Variable Selection 

4.1 Data Composition 
The classification and dating of systemic financial crises are centered on interpretation and 

judgement. This paper utilises the definition from Laeven and Valencia (2012), which describe 

a systemic financial crisis as a situation in which there are significant signs of financial sector 
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distress and losses in wide parts of the financial system that result in widespread insolvencies 

or significant policy interventions. In contrast to isolated banking failures, such as Herstatt 

Bank in Germany in 1974 or the termination of Baring Brothers in the United Kingdom in 

1995, to be included as part of the definition, financial distress needs to be system-wide for 

instance the crises of 1890s, 1930s, Japanese banking crises in the 1990s and during the Global 

Financial Crisis. Dates on systemic financial crises are based on Jordà, Schularick, and Taylor 

(2013, 2017), which feature historical series from Bordo et al. (2001) and Reinhart and Rogoff 

(2009) for the period 1870 to 1970, and post-1970 from Laeven and Valencia (2008, 2012). 

Table 1 chronicles the systemic financial crises experienced by the countries in this study. 

Table 1: Systemic Financial Crisis Dates by Country 
 

Country                     Crisis Dates 
 Australia:  1893, 1989 
 Belgium:  1870, 1885, 1925, 1931, 1934, 1939, 2008 
 Canada:  1907 
 Denmark:  1877, 1885, 1908, 1921, 1931, 1987, 2008 
 Finland:  1877, 1900, 1921, 1931, 1991 
 France:  1882, 1889, 1930, 2008 
 Germany:  1873, 1891, 1901, 1907, 1931, 2008 
 Italy:   1873, 1887, 1893, 1907, 1921, 1930, 1935, 1990, 2008 
 Japan:   1871, 1890, 1907, 1920, 1927, 1997 
 Netherlands:  1893, 1907, 1921, 1939, 2008 
 Norway:  1899, 1922, 1931, 1988 
 Portugal:  1890, 1920, 1923, 1931, 2008 
 Spain:   1883, 1890, 1913, 1920, 1924, 1931, 1977, 2008 
 Sweden:  1878, 1907, 1922, 1931, 1991, 2008 
 Switzerland:  1870, 1910, 1931, 1991, 2008 
 United Kingdom: 1890, 1974, 1991, 2007 
 United States:  1873, 1893, 1907, 1929, 1984, 2007 

 

 

Each instance of systemic financial crisis is represented by a categorical variable, 

expressed by Y୧ = 0 for a no-crisis episode and Y୧ = 1 as proxy for a crisis event. While 

countries are selected for this study based on a key requirement to have experience with at least 

one systemic financial crisis, the preponderance of crisis episodes remains limited, with only 

3.6 percent of all observations classified as Y୧ = 1. Given that machine learning models 

represent novel approaches to deal with financial crises, the low prevalence of crisis episodes 

can be expected to be a constraint for some models to optimally function. Whereas the 

commonly used models might perform different in a setting with a higher proportion of each 

outcome of the categorical response variable, through the horse race of algorithms, fit for 

purpose models are expected to stand out. 
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Literature studies on financial crises underscore a solid relationship between 

macroeconomic factors and financial sector distress (Abiad, 2003; Berg et al., 2005; Claessens 

et al., 2011; Hardy and Pazarbasioglu, 1998; Vlaar, 2000). Specifically, Gonzalez-Hermosillo 

et al. (1997) find that banking sector factors reveal the probability of a bank failure, while real 

sector indicators impact its timing. Accordingly, for this study three classes of predictors are 

assessed, encompassing real, banking and external sectors.  

Real sector indicators underscore the degree of efficient credit utilization in the 

economy and emphasise the ability of borrowers to settle their debt obligations. Particularly, 

this study assesses real gross domestic product per capita, real consumption expenditure, real 

fixed capital formation and capital output ratio. Gross domestic product per capita serves as a 

valuation of collective economic activity, which in conjunction with consumption and 

investment elicit credit demand. Capital output ratio functions as proxy for efficient use of 

investments. A severe credit boom as a result of unsustainable over-investment and 

consumption expenditure could portend an ensuing real sector slowdown. In turn, subdued 

gross domestic product per capita impacting on employment, aggregate output and income 

growth further encumbers the ability of household and corporate borrowers to repay 

outstanding debt. In this context, consumer spending represents a measure of economic health. 

Hardy and Pazarbasioglu (1998) find that banking distress is associated with a concurrent 

reduction in real gross domestic product growth and a drop in the capital output ratio.  

Banking sector indicators comprise banking performance and inherent confidence, and 

include knowledge on total loans, debt-to-GDP, inflation, short-term and long-term interest 

rates and stock market levels. According to Reinhart and Rogoff (2009), credit booms and asset 

bubbles have frequently resulted in financial sector distress. While accelerating banking credit 

growth portends an ensuing lending boom with unsustainable debt levels, sharp fluctuations in 

stock market asset values could consolidate a loss of confidence and lead to further asset price 

deterioration. Consumer inflation and interest rates feature as shock variables affecting debt 

repayment and liability growth. Demirguc-Kunt and Detragiache (1998) highlight that higher 

interest rates and consumer inflation increase the probability of a crisis. In the context of 

diminishing income growth, rising inflation and interest rates hinder the repayment ability of 

debtors. 

External sector indicators gauge regional spillovers and global contagion through the 

US dollar exchange rate and current account balance. A steep currency depreciation following 

reversals in capital flows could result in a slump in asset values and surge in the cost of 

imported goods which restrains the ability of borrowers to meet their periodic debt obligations. 
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Kaminsky and Reinhart (1999) point out that declining terms of trade is an antecedent to 

banking crises. A weakening in the current account balance results in a comparatively higher 

outflow of working capital. 

Explanatory indicators feature in Table 2 (Appendix). Data are obtained from Jordà-

Schularick-Taylor Macrohistory Database (Jordà et al., 2017) and consist of annual time series. 

Another consideration includes experience of a previous systemic financial crisis. The final 

sample spans the period 1870-2016 and consists of 17 advanced economies, which collectively 

experienced 90 systemic financial crises over a combined 2,499 years and with 12 parameters 

constitute 29,988 observations. A representative sample of countries stem from North America, 

Australasia and Europe. According to Table 3 (Appendix), the mean and median quantum of 

crises experienced by the countries amount to five, with Canada on one and Italy on nine.  

Figure 1 illustrates the share of countries in crisis over the past 147 years. A higher 

crisis frequency is observed from 1870 to the Second World War and, which resumed in 1974 

following the great moderation. In particular, the crises of 1907/8, 1929-31 and 2007/2008 

were more ubiquitous and global in nature, impacting more than 50 percent of the sampled 

countries. The Global Financial Crisis had the largest scale, comprising 70 percent of all the 

countries.  
 

Figure 1: Proportion of Countries with Crises 
 
To counter stationarity, ratios, first difference and log forms are employed, with lag 

based on statical significance, while real transformations confine the influence of inflation. 

Unit root tests produce satisfactory results as described in Table 4 (Appendix).  

4.2 Significance of Individual Variables  

The sample means for the three sets of indicators, encompassing real, banking and external 
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sectors are described in Table 5 (Appendix), and include a two-tailed t-test with significance 

levels. 

Real sector indicators highlight a differentiated economic environment during a 

systemic financial crisis. Real gross domestic product per capita drops during a crisis. 

Similarly, real consumption expenditure and real investment are higher absent a crisis, with the 

latter turning negative during bouts of financial instability. Capital output ratio, as proxy for 

efficient use of investment capital, could be construed as reflecting diminishing returns in the 

build-up to a crisis due to an overinvestment boom, while the lower asset valuations during a 

catastrophe present higher forward-looking return rates for long-term investment projects. 

Banking sector indicators accentuate banking performance. Debt, as ratio to gross 

domestic product drops sharply during a crisis as liquidity constraints, more stringent credit 

appetite and lower demand weigh on credit extensions, exemplified by a shrinkage in total 

loans. The lower revaluation of assets is reverberated by the decline in the stock market. 

Consumer inflation lowers during a crisis period due to a reduction in aggregate demand for 

goods and services. While real short-term interest rates increase during a crisis, partly due to 

lower inflation and also as a result of the higher cost to obtain and access credit, long-term rates 

also inch up, due to a risk-on environment, albeit more stable given its forward-looking 

characteristics. The more recent and post-crisis applications of quantitative easing would be 

picked up by non-crisis periods in the subsequent years. 

External sector indicators underscore the spillover between trade partners. Real 

exchange rates depreciate in the wake of systemic events as capital flows follow safer havens. 

Current account weakens in response to more expensive imports and the impact of lower 

aggregate demand.  

Results from the two-tail t-test show that all but two variables are significant, which 

accentuate a discernable environment between crisis and no-crisis periods. The null hypothesis 

of similarity between crisis and tranquil observations can be rejected for all individual real 

sector variables. For the banking sector, short-term rates are significantly different at a 99 

percent confident level, consumer inflation, long-term rates and debt-to-GDP at 95 precent and 

total loans at 90 percent confidence levels. In the case of the external sector, current account is 

dissimilar at 95 percent confident levels.  

While the yield curve features as harbinger of recessions (Benzoni et al., 2018) and 

recently also modelled in financial crisis literature (Alessi et al., 2015; Joy at al., 2017; 

Bluwstein et al., 2020), the inclusion of this factor has not resulted in improved forecasting 

performance, likely given its covariance with other variables such as short- and long-term rates, 
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as well as the smaller impact of interest rates compared to real and other banking sector 

variables and therefore do not appear in this study.  

5. Empirical Results  

Serving as new methods to study an old problem, a total of 13 machine learning algorithms are 

developed to model 147 years of systemic financial crises. Model fit and forecasts are assessed 

across four dataset dimensions. As main modelling dimension, and aimed at providing an 

immediate early warning signal, a standard one period lag structure is employed for all 

variables in the pooled format. Given the low prevalence of Y = 1, the machine learning 

algorithms are modeled across the pooled dataset which encompasses all the countries in this 

study. As all algorithms are classified as supervised methods, benefits include a larger sample 

size, more variance in the predictors, higher degrees of freedom with more crisis episodes, 

collective and faster algorithmic learning, and a practical approach to assess financial 

catastrophes given global interlinkages. Formally, and with variables captured in Table 2 

(Appendix), this can be stated as Y௜,௧ =  𝑐௜ + ∑ ∑ 𝛽ଵ(𝐺𝐷𝑃)௜,௧ିଵ௧்ୀଵே௜ୀଵ + 𝛽ଶ(𝐶𝐸)௜,௧ିଵ + 𝛽ଷ(𝐹𝐶𝐹)௜,௧ିଵ + 𝛽ସ(𝐶𝑂𝑅)௜,௧ିଵ +𝛽ହ(𝐷𝐸𝐵𝑇)௜,௧ିଵ + 𝛽଺(𝐿𝑂𝐴𝑁𝑆)௜,௧ିଵ + 𝛽଻(𝑆𝑇𝑂𝐶𝐾)௜,௧ିଵ + 𝛽଼(𝐶𝑃𝐼)௜,௧ିଵ + 𝛽ଽ(𝑆𝑅)௜,௧ିଵ +𝛽ଵ଴(𝐿𝑅)௜,௧ିଵ + 𝛽ଵଵ(𝐸𝑅)௜,௧ିଵ + 𝛽ଵଶ(𝐶𝐴)௜,௧ିଵ + 𝜀௜,௧,  

where Y௜,௧ is the crisis index, 𝑁 the number of countries, 𝑇 the full time period and 𝜀௜,௧ stochastic 

error term. Benefits would include faster response times as the release of annual data frequently 

follows after the commencement of a crisis in the same or previous year.  

To verify whether a lag structure delivers the highest predictive strength, the second 

modelling dimension applies a contemporary structure and with optimised statistical properties 

as described in Table 2 (Appendix). Mathematically denoted as Y௜,௧ =  𝑐௜ +∑ ∑ ∑ 𝛽௝𝑥௝,௜,௧ି௟௄௝ୀଵ௧்ୀଵே௜ୀଵ + 𝜀௜,௧, with 𝑥௝ the 𝑗th explanatory variable given 𝑗 = 1,…,K, and 𝑙 the 

number of lags.  

Thirdly, all the machine learning algorithms are modeled independently for each 

individual country, by using the optimised contemporary structure employed by the second 

modelling dimension. Technically described as Y௜,௧ = 𝑐௜ +  ∑ ∑ 𝛽௝𝑥௝,௜,௧ି௟௄௝ୀଵ௧்ୀଵ + 𝜀௜,௧, where 𝑖 
comprises the specific country. This allows a direct comparison between country-level 

forecasts based on individual crisis experience and communal experience from the second 

modeling framework. While it comes at a trade-off of a smaller sample size, advantages include 
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a study on heterogeneous method responses where individual country models are aimed at 

detecting idiosyncratic characteristics and nuances.  

Fourthly, given the long-term nature of the data series, where structural breaks could 

occur or level of economic development are not comparable after several decades, a rolling 

window of 20 years is employed to assess forecasting performance. Also based on the 

optimised contemporary framework, this dimension can be formulated as Y௜,௧(𝑤) = 𝑐௜(𝑤) + ∑ ∑ ∑ 𝛽௝(𝑤)𝑥௝,௜,௧ି௟(𝑤)௄௝ୀଵ௧்ୀ௪ே௜ୀଵ + 𝜀௜,௧(𝑤), where 𝑤 is a fixed window with 20 observations 

and 𝑡 = 𝑤, 𝑤 +1,.., 𝑇 with 𝑇 − 𝑤 + 1 the number of subsamples. Essentially, the aim of these 

four approaches is to verify whether long-term pooled, disaggregated, lag or period-bound 

datasets are more conducive to model accuracy, in the context of an inherent bias-variance 

machine learning trade-off and as measured by the error function and confusion matrix.   

The performance of these novel methods is evaluated across recursive out-of-sample 

predictions, by adding one datapoint to the training set for each new iteration and forecasting 

one year ahead, until the end of the sample. Formally, Y௜,௧ା௛ = 𝑐௜ +  𝛽௝𝑥௝,௜,௧ା௛ + 𝜀௜,௧ା௛, where ℎ denotes the ℎ-step ahead forecasting horizon, with 1≤ ℎ ≤ T, and 𝑥௝,௜,௧ା௛ a vector of 

regressors with time-varying parameters. An expanding window is used in contemporary and 

lag format as well as for individual countries. While the rolling window retains a consistent 20-

year range, it likewise updates iteratively by adding one new year while simultaneously 

dropping the year furthest back. Performance of individual countries is modelled separately 

and reported in both individual and aggregated format for comparability. The starting date for 

all model forecasts is based on available degrees of freedom.  

Serving as regression algorithm, a probit model, which is widely employed by 

policymakers to assess the likelihood of an adverse event occurring, also constitutes a valuable 

alternative to evaluate forecasting performance compared to more recently developed 

algorithmic frameworks. Coefficients and statistical significance for both the lag structure and 

optimised contemporaneous pooled probit models are described in Table 6 (Appendix). In the 

case of the former, half of all variables are significant whereas with the optimal model, with 

the exception of the US dollar exchange rate, all variables are significant.   

Performance assessment criteria includes area under receiver operating characteristics 

curves (AUROC), 𝐹1 measures and Brier scores. While receiver operator characteristics (ROC) 

constitute a visual representation of the true positive rate by false positive rate or 1 − 

specificity, area under curve (AUC) summarises the outcome into a single value. True positive 

rate (TPR) is also referred to as sensitivity or recall and comprise the ratio of correct predictions 
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(TP) to the summation of correct predictions and false negatives (FN) or type II errors, where 𝑇𝑃𝑅 = 𝑇𝑃𝑇𝑃+𝐹𝑁.  False negative is the incorrect acceptance of a false hypothesis. In an 

environment where the subject under study has a low prevalence as is the case with financial 

crises, AUC is shown to exhibit higher stability given its insensitivity to outcome imbalances. 

AUC scores range from 0 to 1, where the latter signifies a correct set of forecasts. (DeLong et 

al., 1988; Fawcett, 2006). 

In comparison, 𝐹1 score represents another measure of a model’s accuracy for a given 

forecast. 𝐹1 scores are a weighted average of recall and precision, the latter the ratio of true 

positives to the combined true and false positives rates. False positive rates (FPR) consist of 

false alarms (FP) as a ratio to the collective false alarms and true negatives (TN), denoted 

mathematically as 𝐹𝑃𝑅 = 𝐹𝑃𝐹𝑃+𝑇𝑁. 𝐹1 as a measure thereby takes into account both false positives 

and false negatives or type I and type II errors (Chinchor, 1992; Van Rijsbergen, 1979).  𝐹1 

score can formally be denoted as 𝐹1 = 𝑇𝑃𝑇𝑃+12(𝐹𝑃+𝐹𝑁), where a higher 𝐹1 score highlights a more 

accurate forecast, with 𝐹1=1 showing a perfect forecast. Predictions without true positive 

values would revert to 𝐹1=0.  

The Brier score in contrast is akin to a cost function, which measures the mean squared 

difference between the predicted probability and the actual outcome (Brier, 1950). Formally it 

can be stated as 𝐵𝑟𝑖𝑒𝑟 𝑠𝑐𝑜𝑟𝑒 =  ଵே ∑ (𝑓௧ − 𝑎௧)ଶே௜ୀଵ , where 𝑓 is the forecasted value, 𝑎 the actual 

outcome and 𝑁 the number of forecasts. Brier scores also range from 0 to unity, with the 

inversion applicable in that a lower score is indicative of a lower error and thereby a higher 

accuracy.  

5.1 Recursive Out-of-Sample Crisis Forecasts with Lag Structure 

The main modelling dimension encapsulates all the data in a pooled format, with a key 

configuration in the lag structure of the predictors. Given the annual time series, and with the 

purpose of predicting an ensuing crisis at shortest lead time, all predictors are transformed 

using one lag. Through variable importance techniques, leading indicators are uncovered across 

nearly a century and a half, simultaneously providing insights into the workings of the machine 

learning models and serving as input into the policy making process to prevent and mitigate 

ensuing financial crises. Prediction strength for all the algorithms is assessed thorough 

recursive out-of-sample forecasts. 
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5.1.1 Variable Importance  

A benefit of machine learning methods entails the identification of the most important 

explanatory indicators. This is achieved by analysing the prevalence of each variable used by 

the algorithm to make key decisions. When the selection of a variable at a split node results in 

better performance of the error function, the higher its relative importance becomes. A Gini 

index is employed to measure performance, based on a reduction in the sum of squared errors 

each time a variable is selected to split a tree or node (Brownlee, 2016). Based on the gradient 

boosting algorithm, which frequently outperform amongst machine learning methods in horse-

race events (Nevasalmi, 2020), and selected for its classification and regression abilities, Figure 

2 denotes all the predictors across the full period, while Figure 3 (Appendix) shows predictors 

individually on a scale of 50, and Figure 4 (Appendix) by sector. As robustness test, random 

forests variable importance, as denoted in Figure 5 (Appendix) employs two further measures. 

The first is the permutation measure, formally denoted as 𝑉𝐼(𝑋௝) = ∑ 𝑉𝐼(𝑡)𝑡𝜖𝐵 (𝑋𝑗)𝑛𝑡𝑟𝑒𝑒 , where the 

importance measure for indicator 𝑋௝ is estimated as the summation of the importance scores 

across all trees. Expressed as a percentage increase in mean squared error, it entails applying 

permutations to each individual variable to assess the resultant impact on the overall accuracy 

of predictions. Where a variable consists of random noise, permutations should not affect 

accuracy. Second is the increase in node purity. Mathematically describe as 𝑉𝐼(𝑋௠) =1𝑛𝑡𝑟𝑒𝑒 ∑  𝑇  ∑  𝑡∈𝑇:𝑣(𝑠𝑡)=௑೘   𝑝(𝑡)∆𝑖(𝑠𝑡, 𝑡), variable  importance is based on the mean value 

determined across all trees 𝑇 and all nodes 𝑡, where 𝑝(𝑡) shows the number of samples reaching 

node 𝑡 and 𝑣(𝑠௧) signifies the variable utilised to split node 𝑡. This measure is analogous to the 

Gini index employed by gradient boosting, where a reduction in the sum of the squared error 

from the utilisation of a variable to split a node, results in a higher importance allocated to the 

associated variable (Breiman, 2001; Hjerpe, 2016). From an interpretation perspective, the 

scale is less relevant whereas relative values are indicative of inter-variable importance. A 

drawback of the random forests variable importance approach revolves around a higher 

influence of continuous and multiple outcome variables on importance measures (Strobl et al., 

2007).  

According to the findings for the panel with lag structure, fixed capital formation exerts 

the single most influence, from around 20 percent at the turn of the 20th century, spiking to 50 

percent the year before the 1907 banking crisis, followed by a gradual increase over the 

subsequent decades, reaching above 40 percent in the 2010s. The second most influential 
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variable is gross domestic product per capita, which provides an overall gauge of economic 

activity adjusted for the size of the population, and that grew from low single digits in the 1880s 

to 15 percent at the end of the sample, hovering around 10 percent for most of the period under 

review. While these variables stood out, significant fluctuations in the levels of other variables 

are observed during specific developmental epochs. For instance, debt-to-GDP spiked above a 

35 percent level of influence around the banking crisis in the 1890s while the stock market 

remained above 20 percent in the years leading up to the 1907 crisis. Consumption expenditure 

peaked at 20 percent around the first two decades of the 1900s. These findings are consistent 

with research on the role of fixed capital formation booms, vigorous consumption spending 

and escalating debt growth on the formation of financial crisis (Kindleberger, 1978, Reinhart 

and Rogoff, 2009), with the stock market instrumental as an indicator of existing 

vulnerabilities. Serving as a major leading indicator for most of the 1900s, inflation has been a 

pivotal indicator since the years before the Great Depression as cost-push pressures exert more 

influence on the repayment ability of debtors, while exchange rates peaked around both world 

wars.  

Findings from the random forests robustness test broadly confirms the leading 

indicators. Fixed capital formation takes poll position in reducing the mean squared error and 

sum of squared and contributing to higher overall accuracy. Capital output ratio features in the 

top three most influential variables across both measures, while inflation is highlighted as 

having the second highest Gini index. Furthermore, total loans and short-term rates are also 

classified as important variables, while the inclusion of total loans and the current account 

increases overall accuracy. 

On average, banking sector variables constitute 28 percent of the variation in crisis 

prevalence, real sector 64 percent and external sector 8 percent. After peaking around a 65 

percent level of importance in the 1880s, banking sector predictors declined in prominence 

until the 1910s and drifted upwards above 30 percent in the lead up to the Great Depression, 

after which it fluctuated within a 20-30 percent band until the start of the 21st century. The real 

sector demonstrates an inverse trajectory, gradually increasing from around a 30 percent level 

of importance in the 1880s to over 60 percent in the years before the start of the Great 

Depression in 1929. During the subsequent eight decades, real sector variables remained on a 

high level of contribution to the underlying causes of financial crises, spiking to 70 percent at 

the start of the Global Financial Crisis. The lag structure of the panel model partly detects the 

real estate investment boom that contributed to the sub-prime crisis and eventually culminated 

in a fully-fledged financial crisis. Albeit more volatile, external sector influence increased 
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during the end of the 19th century and first two decades of the 20th century in tandem with the 

progression of globalisation, remaining in a narrow band during the subsequent decades, 

spiking again in the 1970s with the dissolution of the gold standard.  

In a comparison applying a contemporaneous structure in Figure 4 (Appendix), banking 

sector influence increases to 50 percent with real sector dropping to 42 percent, and with 

external sector unchanged, emphasising the dynamic adjustments of leading indicators one year 

preceding a crisis compared to the year of a crisis. 

The random forests variable importance measure for the lag structure further 

underscores a similar outcome as with the gradient boosting measure, with banking sector 

influence observed around 40 percent, real sector on 53 percent and external sector at 7 percent 

according to their contributions to overall model accuracy. The broadly comparable results 

between gradient boosting and random forests support a targeted mitigation approach from a 

policy making perspective. 
 

 
Figure 2: Variable Importance Over Time 
 

Table 7 exhibits the recursive out-of-sample forecasts using AUC mean values, 𝐹1 and Brier 

scores. The top performing methods using AUC are random forests, gradient boosting, probit 

regression, ridge, linear regression and adaptive boosting, all around the 70 percent level of 

accuracy. 𝐹1 shows a comparable result, with pruned tree followed by gradient boosting and 

random forests. Brier scores are lowest for support vector machine, followed by full tree in 

reducing the mean squared error between actual and predicted values. Results are clustered 

within a 0.06 to 0.08 band for most algorithms. An overall ranking is estimated as a function 

of AUC + F1 Score – Brier Score, where the highest values are indicative of topmost predictive 
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strength, with random forests first, followed by gradient boosting and support vector machines. 

Overall AUC predictive accuracy across all algorithms reaches 64 percent for the lag structure. 

Table 7: Recursive Out-of-Sample Forecasts with Lag Structure 
  

Method AUC 𝐹1 Score  Brier Score Rank 
Baseline 0.534 [0.474, 0.593] 0.030 0.073           0.068         8 
Linear Prediction 0.707 [0.655, 0.759] 0.026 0.130           0.074         5 
Probit Regression 0.732 [0.678, 0.787] 0.027 0.073           0.840       11 
K-Nearest Neighbours 0.498 [0.497, 0.499] 0.000 0.000           1.004       13 
Support Vector Machine 0.696 [0.640, 0.752] 0.028 0.116           0.015         3 
Ridge 0.707 [0.653, 0.761] 0.027 0.137           0.071         4 
Lasso 0.533 [0.473, 0.592] 0.030 0.073           0.069         9 
Partial Least Squares 0.500 [0.500, 0.500] 0.000 0.000           1.000       12 
Full Tree 0.617 [0.545, 0.690] 0.027 0.136           0.063         7 
Pruned Tree 0.605 [0.528, 0.682] 0.039 0.181           0.064         6 
Adaptive Boosting 0.697 [0.639, 0.756] 0.029 0.071           0.500       10 
Gradient Boosting 0.754 [0.702, 0.807] 0.026 0.142           0.069         2 
Random Forests 0.765 [0.719, 0.811] 0.023 0.139           0.072         1 
 

  
 

 

Variance of AUC is defined by DeLong et al. (1988) and estimated with algorithm specified 
by Sun and Xu (2014). AUC upper and lower bounds in squared brackets are based on 95 
percent confidence intervals. Standard errors in italics. 
 

5.2 Recursive Out-of-Sample Crisis Forecasts for All in Contemporaneous Format 

As robustness tests, three more forecasting frameworks are developed. The second modelling 

dimension also entails combining all 17 countries in an optimised contemporaneous pooled 

format across the period under review. In contrast to the lag model, the aim is to verify if 

predictive accuracy improves without the benefit of enhanced lead time and instead through 

the use of contemporaneous indicators. Similar to the panel model with lag structure, this 

approach allows the machine learning methods to observe and learn from the experience of all 

countries and utilises a comprehensive dataset in the context of a low frequency event to build 

and calibrate each model in recursive manner to operationalise out-of-sample forecasting.  

5.2.1 Contemporaneous pooled recursive out-of-sample results 

Recursive out-of-sample results for all countries in optimised contemporaneous pooled format 

are summarised in Table 8. In terms of AUC, gradient boosting is the best performing model 

followed by random forests. Linear, ridge and probit models also perform above average. 

Assessing the 𝐹1 scores, full tree is in first position, followed by gradient boosting and random 

forests. An analysis of Brier scores shows support vector machine with lowest error, followed 

by ridge. A comparison of the three measures shows that AUC correlates 67 percent of the time 
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with 𝐹1 scores, with the latter showing a negative correlation with Brier score of 75 percent. 

Based on the combined ranking across all three measures, gradient boosting and random forests 

constitute the top two followed by ridge. In contrast to the lag structure dimension (overall 64 

percent), the contemporaneous format a shown to register lower average results of 61 percent, 

emphasizing the forecasting benefits of detecting vulnerabilities with lead time. 

Table 8: Recursive Out-of-Sample Forecasts in Contemporaneous Pooled Format 
  

Method AUC 𝐹1 Score  Brier Score Rank 
Baseline 0.564 [0.500, 0.627] 0.032 0.068           0.076         7 
Linear Prediction 0.687 [0.632, 0.742] 0.027 0.108           0.084         5 
Probit Regression 0.681 [0.615, 0.747] 0.033 0.070           0.844        11 
K-Nearest Neighbours 0.499 [0.498, 0.500] 0.000 0.000           1.002       13 
Support Vector Machine 0.637 [0.588, 0.687] 0.025 0.098           0.020         4 
Ridge 0.683 [0.629, 0.738] 0.027 0.114           0.073         3 
Lasso 0.528 [0.457, 0.598] 0.035 0.082           0.076         8 
Partial Least Squares 0.500 [0.500, 0.500] 0.000 0.000           1.000       12 
Full Tree 0.570 [0.496, 0.643] 0.037 0.163           0.074         6 
Pruned Tree 0.544 [0.486, 0.602] 0.029 0.075           0.076         9 
Adaptive Boosting 0.638 [0.577, 0.700] 0.031 0.122           0.500       10 
Gradient Boosting 0.750 [0.692, 0.808] 0.029 0.137           0.081         1 
Random Forests 0.696 [0.637, 0.755] 0.030 0.126           0.084         2 
 

  
 

 

Variance of AUC is defined by DeLong et al. (1988) and estimated with algorithm specified 
by Sun and Xu (2014). AUC upper and lower bounds in squared brackets are based on 95 
percent confidence intervals. Standard errors in italics. 

5.2.2 Individual country out-of-sample results 

Individual country forecasts are implemented by taking the experience of other countries into 

account. The purpose is to authenticate if knowledge of rare events from other countries could 

improve forecasting performance of an individual country. While experience could be nuanced 

with unique predictors, findings from variable importance signify commonality across the full 

cohort of countries, which could underscore key learnings with broad-based applications. It 

also allows more variability in the predictors and increases the degrees of freedom. Mean AUC 

values are summarised for each country in Table 9 (Appendix).  

Table 10 (Appendix) highlights the top performing model per country and the deviation 

to both baseline and across all models. Accuracy rates range from 60.3 percent in the case of 

Germany to 94.3 percent for Australia. Full tree, linear and probit regression each registers the 

highest accuracy rates across three countries, gradient boosting and random forests have the 

most correct predictions amongst two countries each and SVM, ridge and adaptive boosting 

each outperforms in one country.  
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The deviation between the top performing model and baseline confirms the value added 

by the best algorithm against a non-parametric benchmark, where a higher variance denotes a 

larger enhancement. Top models add value for all countries, and contribute above 20 

percentage points for Finland, Italy, Australia, UK, Sweden and Switzerland. 

Overall deviation serves to mark the variability of the models. A higher deviation would 

accentuate the complexity of modelling the underlying series for the specific country. 

Employing 10 percentage points as an arbitrary threshold, and assessing all models, a large 

degree of complexity was encountered for the majority of countries, with Australia and 

Netherlands at the top end of the spectrum. 

5.3 Recursive Out-of-Sample Crisis Forecasts for Individual Countries 

The third modelling dimension revolves around the individual experience of each country. In 

contrast to the pooled format with contemporaneous structure, models only take into account 

the knowledge of what transpired in a particular country, which ensures that idiosyncratic 

factors are ringfenced for the development of country specific models and in turn used for 

recursive forecasting. For comparability, results are reported in both individual country and 

aggregated format, the latter a combination of the former. 

Table 11: Recursive Out-of-Sample Forecasts for Individual Countries in Aggregated Format 
  

Method AUC 𝐹1 Score  Brier Score Rank 
Baseline 0.501 [0.434, 0.567] 0.034 0.073    0.08         7 
Linear Prediction 0.602 [0.536, 0.668] 0.033 0.092    0.22         8 
Probit Regression 0.543 [0.474, 0.612] 0.035 0.074    0.97       11 
K-Nearest Neighbours 0.503 [0.490, 0.516] 0.006 0.107   1.01       12 
Support Vector Machine 0.559 [0.497, 0.621] 0.031 0.082    0.04         3 
Ridge 0.530 [0.481, 0.580] 0.025 0.106    0.40         9 
Lasso 0.582 [0.521, 0.643] 0.031 0.075    0.09         4 
Partial Least Squares 0.499 [0.497, 0.500] 0.000 0.000   1.00       13 
Full Tree 0.593 [0.535, 0.650] 0.029 0.107    0.07         2 
Pruned Tree 0.501 [0.432, 0.570] 0.035 0.076    0.07         6 
Adaptive Boosting 0.658 [0.597, 0.720] 0.031 0.067    0.50       10 
Gradient Boosting 0.647 [0.587, 0.708] 0.030 0.094    0.10         1 
Random Forests 0.537 [0.477, 0.597] 0.030 0.076    0.10         5 
 

  
 

 

Variance of AUC is defined by DeLong et al. (1988) and estimated with algorithm specified 
by Sun and Xu (2014). AUC upper and lower bounds in squared brackets are based on 95 
percent confidence intervals. Standard errors in italics. 
 

Shown in Table 11 and in aggregated format, the four best performing methods are 

adaptive and gradient boosting, linear regression, full tree and lasso, on average slightly under 
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or above 60 percent. In terms of 𝐹1 scores, full tree, k-nearest neighbours, ridge and gradient 

boosting also reach high accuracy, whereas support vector machine, full and pruned tree reflect 

low Brier scores. Overall, the top three models are gradient boosting, full tree and support 

vector machine. In contrast to the contemporaneous pooled format, knowledge from other 

countries slightly improves the average aggregated outcomes to 61 percent from 56 percent. In 

comparison, the non-aggregated format displayed on an individual country-level by mean AUC 

in Table 12 (Appendix), highlights a narrowing in the deviation between the two approaches, 

at 61 percent to the 62 percent for the pooled format. However, when comparing the best 

performing models between the two approaches as shown in Table 13 (Appendix), the inverse 

transpires, yet at marginal levels with individual format on 81 percent to the pooled format on 

80 percent. Across both formats, the top models therefore correctly predict at a high (80 

percent) accuracy rate across the 147 years under investigation. In terms of the top performing 

models, adaptive boosting records the most accurate prediction across four countries, pruned 

tree across three countries, lasso, ridge, support vector machine and linear each for two 

countries with full tree and probit on one country each. 

While the slightly lower deviation to baseline could be ascribed to less variability in the 

predictors, lasso in the case of Sweden and full tree for Germany added the most value. 

Although the complexity encountered is slightly less for the contemporaneous pooled format, 

with a difference of only one percentage point, the variability in predictors might result in 

models better equipped to handle more complex datasets. Similar to the contemporaneous 

pooled format, Australia is at the top of the list for complexity, but then followed by Canada. 

The lower prevalence of crises experienced by these two countries can be expected to 

contribute to the degree of complexity faced by the models. 

5.4 Rolling Window Out-of-Sample Crisis Forecasts 

As fourth modelling dimension, a new configuration is applied to the panel format. Instead of 

increasing the cumulative volume of the training set during each iterative procedure, a 20-year 

rolling window is employed. As the economic landscape evolves over time, and in the context 

of the extended historical series, comparability between contemporary events and occurrences 

that took place over a century ago might be limited, which could affect the forecasting 

performance when applied to a different epoch. Informed by the mid-point of the Kuznets 

infrastructural investment cycle, spanning 15-25 years (Black et al. 2012), and given the 

importance of fixed capital formation as leading indicator over the 147-year period, a 
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standardised 20-year period window is employed, executed on a rolling basis, through which 

the time-bound focus allows events to be modelled and forecasted around a comparable period.  

Shown in Table 14, average mean values of 64 percent are comparable to the pooled 

format with a lag structure. Top performing methods as based on forecasted accuracy consist 

of random forests and gradient boosting, followed further down by probit and linear regressions 

and ridge. Random forests and gradient boosting generate high 𝐹1scores with mid-tier Brier 

scores. Combined top models comprise gradient boosting, random forests and linear regression. 

Table 14: Rolling Window Out-of-Sample Forecasts 
  

Method AUC 𝐹1 Score  Brier Score Rank 
Baseline 0.527 [0.467, 0.587] 0.032 0.082            0.065         8 
Linear Prediction 0.717 [0.652, 0.782] 0.033 0.136            0.072         3 
Probit Regression 0.731 [0.662, 0.800] 0.035 0.066            0.869       11 
K-Nearest Neighbours 0.499 [0.497, 0.500] 0.000 0.000             1.003       13 
Support Vector Machine 0.648 [0.590, 0.706] 0.029 0.111            0.018         5 
Ridge 0.696 [0.638, 0.755] 0.029 0.116            0.084         6 
Lasso 0.528 [0.469, 0.587] 0.030 0.082            0.077         9 
Partial Least Squares 0.500 [0.500, 0.500] 0.000 0.000              1.000       12 
Full Tree 0.660 [0.581, 0.739] 0.040 0.160            0.068         4 
Pruned Tree 0.536 [0.480, 0.592] 0.028 0.087            0.069         7 
Adaptive Boosting 0.665 [0.601, 0.729] 0.032 0.066            0.500       10 
Gradient Boosting 0.776 [0.717, 0.835] 0.030 0.158            0.076         1 
Random Forests 0.778 [0.726, 0.829] 0.026 0.142            0.078         2 
 

  

 

 

Variance of AUC is defined by DeLong et al. (1988) and estimated with algorithm specified 
by Sun and Xu (2014). AUC upper and lower bounds in squared brackets are based on 95 
percent confidence intervals. Standard errors in italics. 

5.5 Ranked Methods across Forecasting Models 

Across the four modelling dimensions, from optimised contemporaneous pooled format to 

transformations with lag structure and a rolling window to the aggregation of individual 

countries, select machine learning methods performed at consistently high accuracy levels. 

These are inclusive of ensemble and decision tree algorithms as well as traditional regressions. 

The strength of the probit and linear regressions to perform above average is supported by 

studies on its comparative effectiveness such as Beutel et al. (2019). In several instances, 

further transformations improved on model performance as it becomes better equipped to 

model the underlying dataset and predict an ensuing crisis. 

Summarised by highest AUC mean value for each method specific to the associated top 

dimension, Table 15 underscores the variability and improvements across the four dimensions. 

Accordingly, six of the 13 models reached highest predictive strength through the lag structure, 
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four through the standardised rolling window, two within the contemporaneous pooled format 

and one when employing the aggregated individual format. When applying this combination, 

average mean AUC values increase to 65 percent, with the top two algorithms featuring random 

forests and gradient boosting, both on 77 percent overall accuracy rates across 17 countries and 

147 years. Notwithstanding, average AUC mean values increase above 80 percent for top 

individual country models, both in panel and aggregated format. Across all three measures, the 

top models are gradient boosting, random forests, and support vector machine. While both the 

lag structure and rolling window deliver 64 percent overall accuracy rates, the former 

encompass highest prediction strength for nearly half of the machine learning models. 

However, the two best performing models feature within a rolling window framework, 

underscoring the value of employing a diverse set of modelling tools for leaning against the 

wind to prevent cleaning up after the bust. 

Table 15: Top Recursive Out-of-Sample Forecasts Across All Formats 
    

Methods Top Dimension AUC  𝐹1 Score  Brier Score Rank 
Baseline Pool 0.564 0.068   0.076  8 
Linear Prediction Window 0.717 0.136    0.072  4 
Probit Regression Lag 0.732 0.073   0.840  11 
K-Nearest Neighbours Individual 0.503 0.107   1.010  12 
Support Vector Machine Lag 0.696 0.116   0.015  3 
Ridge Lag 0.707 0.137   0.071  5 
Lasso Lag 0.533 0.073   0.069  9 
Partial Least Squares Pool 0.500 0.000   1.000  13 
Full Tree Window 0.660 0.160    0.068  6 
Pruned Tree Lag 0.605 0.181   0.064  7 
Adaptive Boosting Lag 0.697 0.071   0.500  10 
Gradient Boosting Window 0.776 0.158    0.076  1 
Random Forests Window 0.778 0.142    0.078  2 

 

   

6. Conclusion 

In developing new forecasting methods for an old problem, 13 machine learning algorithms 

are employed to study 147 years of systemic financial crises across 17 countries. The range of 

methods include a baseline model as non-parametric approach as well as linear and probit 

regressions to serve as common comparison. Instance-based algorithms comprise k-nearest 

neighbours, which categorises new observations according to their closest points in an existing 

dataset, and support vector machine that apply kernels to enlarge the feature space to allow for 

non-linear relationships. Regularisation algorithm ridge reduces less significant coefficients 

towards zero, while in the case of lasso, coefficient estimates equate to zero. Classification and 
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regression trees include full tree and pruned tree and accommodate non-linear relationships 

and allow interactions between variables. Partial least squares constitute a dimension reduction 

method that find new features which approximate the initial features and are related to the 

outcome variable. Ensemble algorithms operationalise a set of weak learners to communally 

build a strong learner, with the aim of improving the performance of an individual forecast. 

The algorithms span random forests which revolve around bagging as well as gradient boosting 

and adaptive boosting which make use of a boosting process. 

This paper implements a set of 12 leading indicators, inclusive of real sector predictors 

such as gross domestic product per capita, consumption expenditure, fixed capital formation 

and capital output ratio, as well as banking sector predictors comprising debt, credit, stock 

market, inflation and interest rates, together with external sector predictors which consist of 

exchange rates and current account balance. A representative sample of countries across several 

regions are used.  

Four modelling dimensions which encompass a contemporaneous pooled format, 

transformations with lag structure and a 20-year rolling window as well as in individual format 

are implemented to assess forecasting strength of machine learning methods. Recursive out-of-

sample forecasting performance is assessed by means of AUC, 𝐹1 and Brier scores. Findings 

highlight that an expanding window lag structure as well as rolling window increase overall 

accuracy rates in comparison to the contemporaneous pooled and individual format. 

Notwithstanding, some individual country forecasts improved on the pooled experience 

utilised for individual country level predictions. Random forests and gradient boosting are 

consistently top performing machine learning methods, both classifying 77 percent of forecasts 

correctly across 17 countries and 147 years. Traditional regression models probit and linear 

also perform above average at respectively 73 and 71 percent accuracy rates. All top models 

add accuracy value, reaching above 20 percentage points for several countries in comparison 

to a non-parametric baseline. A level of complexity is detected across the time series for most 

countries, the majority breaching an arbitrary 10 percentage points threshold level in pooled 

and individual formats. 

In an analysis of leading indicators, fixed capital formation exhibits the largest 

influence, followed by GDP per capita according to gradient boosting and inflation by means 

of random forests variable importance measures. Debt-to GDP, stock market and consumption 

were highly influential at the turn of the 20th century, whereas inflation has increased in 

importance over the last several decades. On an average basis over the full period and using a 
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lag structure, banking sector variables constitute 28 percent of the variation in crisis prevalence, 

real sector 64 percent and external sector 8 percent. 

The practicality of implementing machine learning algorithms, its ability to handle 

large datasets and deal with non-linear relationships allow policymakers a straightforward set 

of tools to study financial vulnerabilities with improved forecasting accuracy. Across a long 

history of systemic financial crises, machine learning methods represent novel methods that 

make a valued contribution to the literature on early warning crisis signals and emerging 

forecasting frameworks.  
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Appendix 

Section A 
 
A1 Non-Parametric 

A1.1 Baseline Approach 

As a non-parametric model, the baseline model functions as benchmark for the performance of 

all the algorithms. Based on a conventional modelling framework, the modelling approach 

studies mean values across the training dataset. Formally stated as 𝑥ො௜ =  ଵே ∑ 𝑥௜ே௜ୀଵ , the model 

renders a straightforward non-parametric solution which is employed for predictions of the test 

dataset.  

A2 Regression Algorithms 

A2.1 Linear Probability Model 

The linear probability model is an extension of the linear regression equation and 

operationalised as a generalised case of the binomial distribution. Thereby, underscoring a 

linear relationship between the predictors and discrete outcome variable Y. The probability of 

observing a systemic financial crisis (𝑌 = 1) or non-crisis (𝑌 = 0) is determined through vector 𝑥, mathematically stated as 𝑃𝑟𝑜𝑏(𝑌 = 1|𝑥) = 𝐹(𝑥, 𝛽) and 𝑃𝑟𝑜𝑏(𝑌 = 0|𝑥) = 1 − 𝐹(𝑥, 𝛽). 

Given that the 𝛽 parameters express the response of fluctuations in 𝑥 on the likelihood of a 

crisis episode, the marginal effects of predictors on the probability of the independent variable 

can be estimated. Following Greene (2008), by inserting the linear regression equation, 𝐹(𝑥, 𝛽) = 𝑥ᇱ𝛽, the linear probability regression can be denoted as 𝑌 = 𝐸[𝑦|𝑥] + 𝑦 −𝐸[𝑦|𝑥] =  𝑥ᇱ𝛽 + 𝜖. A shortfall of the linear probability modelling framework is that 𝑥ᇱ𝛽 is not 

constrained to the 0 to 1 interval, and out of range results could inhibit clear interpretation 

(Greene, 2008).  

A2.2 Probit Regression 

As one of the oldest (see Fechner (1860), Gaddum (1933) and Bliss (1934, 1935)) and most 

popular statistical methods (Cramer, 2002) the probit regression, comparable to the linear 

probability method, models a binary outcome variable. Operationalised, by modelling an 

inverse standard normal distribution of the outcome variable as a linear relationship to the 
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explanatory variables. Based on Greene (2008), this can formally be denoted as 𝑌௜∗ = 𝑥௜ᇱ𝛽 +𝜀௜, where 𝜀௜  𝑁[0,1] and 𝑦௜ = 1 if 𝑦௜∗ > 0, else 𝑦௜ = 0. Given that 𝑦௜ follows a Bernoulli 

distribution, which consist of a single draw from a two-outcome binomial procedure, 

probability values can be described by 𝑃𝑟𝑜𝑏(𝑦௜ = 1|𝑥௜) = 𝜙(𝑥ᇱ௜ , 𝛽) and 𝑃𝑟𝑜𝑏(𝑦௜ = 0|𝑥௜) =1 − 𝜙(𝑥ᇱ௜, 𝛽). As nuance, the binary choice model in comparison to the linear probability 

model is estimated through maximum likelihood, which in combination with success 

probability 𝐹(𝑥ᇱ௜𝛽) and independent and random observations can be defined through a joint 

probability as 𝐿(𝑦|𝑋, 𝛽) = ∏ [𝜙(𝑥ᇱ௜𝛽)]௬೔[1 − 𝜙(𝑥ᇱ௜𝛽)]ଵି௬೔௡௜ିଵ . 

A3 Instance-Based Algorithms 

A3.1 K-Nearest Neighbours (k-NN) 

Procedurally, and through a positive integer k and observation 𝑥଴, the k-NN classifier detects 

the k points in the dataset which are adjacent to 𝑥଴, characterized by 𝑁଴. Consequently, the 

conditional probability for class j is estimated as the proportion of datapoints in 𝑁଴ where the 

response values are identical to j, described formally as 𝑝𝑟(𝑦 = 𝑗|𝑥 = 𝑥଴) = ଵ௄ ∑ 𝐼(𝑦௜ = 𝑗)௜∈ேబ .  

Operationally, k-NN integrates Bayes’ theorem to label the test observation 𝑥଴ as the 

outcome class with the highest probability. Subsequent to the classifier technique, the k-NN 

regression method is estimated, where 𝑓መ(𝑥଴) is determined as the average of all the training 

responses in 𝑁଴, stated as 𝑓መ(𝑥଴) = ଵ௄ ∑ 𝑦௜௫೔∈ேబ . In setting k, the allowable error rate impacts on 

the bias-variance trade-off. Where k = 1 the error rate in the training dataset converges to zero, 

but the variance encountered in the test set would be large. By increasing the value of k, a 

higher quantity of errors would lead to higher bias, while the error count in the test dataset 

could shrink (James et al., 2013). In this paper, cross-validation consists of tenfold resampling, 

repeated ten times, with maximum number of k set to 9, and with distance set at 2. 

A3.2 Support Vector Machine (SVM) 

Kernels determine the level of relationship, which in turn finds support vector lines to classify 

the observations. Based on James et al. (2013), SVM is constructed using support vector 

classifiers, where a linear support vector classifier can be denoted as 𝑓(𝑥) = 𝛽଴ + ∑ 𝛼௜(𝑥, 𝑥௜ே௜ୀଵ ),    (1) 
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with 𝑁 number of parameters 𝛼௜. To estimate the kernel, inner products of observations 

instead of actual observations are employed, represented by (𝑥௜, 𝑥௜ ᇱ) = ∑ (𝑥௜, 𝑥௜ᇲ௝)௣௝ୀଵ ,    (2) 

for observations (𝑥௜ , 𝑥௜ ᇱ). Consequently, parameters 𝛼௜, … , 𝛼௡ are computed using inner 

products (𝑥௜, 𝑥௜ ᇱ) of observations. Given that 𝛼௜ only takes positive values for support vectors, 𝛼௜ turn zero for all non-support vector observations. Where 𝑆 constitutes the set of support 

points, equation (2) can be restated as 𝑓(𝑥) = 𝛽଴ + ∑ 𝛼௜(𝑥, 𝑥௜)௜∈ௌ ,    (3) 

resulting in significantly fewer terms to consider. The inner product of the observations 

can be replaced with a generalized version 𝑘(𝑥௜, 𝑥௜ᇲ), where 𝑘 is a kernel, a function which 

measures the resemblance across a set of observations. Enhanced with a polynomial kernel of 

degree d so that 𝑘(𝑥௜, 𝑥௜ ᇱ) = (1 + ∑ (𝑥௜௝, 𝑥௜ᇲ௝௣௝ୀଵ )ௗ,   (4)  

where d > 1, to support more flexible decision boundaries. Compared to the original 

feature space, through the polynomial, the kernel permits a higher-dimensional space. A 

support vector classifier in conjunction with a non-linear kernel result in a support vector 

machine and can mathematically be denoted as 𝑓(𝑥) = 𝛽଴ + ∑ 𝛼௜𝑘(𝑥, 𝑥௜)௜∈ௌ .    (5) 

Where d = 1, the SVM and support vector classifiers are considered identical. 

For the SVM algorithm, the radial kernel is used with gamma as 0.083, cost constraints 

(regularisation constant) set at 1 and insensitive loss-function (epsilon) to 0.1. 

A4 Regularisation Algorithms 

Ridge and lasso introduce some bias by adding a penalty to the regression, with the aim 

of dealing with the bias-variance trade-off encountered by machine learning. 

 

A4.1 Ridge 

In contrast to the ordinary least squares statistical technique which computes 𝛽଴, 𝛽ଵ, … , 𝛽௣ by 

employing values which minimizes the equation 𝑅𝑆𝑆 = ∑ ൫𝑦௜ − 𝛽଴ − ∑ 𝛽௝𝑥௜௝௣௝ୀଵ ൯ଶே௜ୀଵ ,    (1) 

ridge coefficients are determined by minimising the following equation,  
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∑ ൫𝑦௜ − 𝛽଴ − ∑ 𝛽௝𝑥௜௝௣௝ୀଵ ൯ଶ +௡௜ୀଵ 𝜆 ∑ 𝛽௝ଶ௣௝ୀଵ = 𝑅𝑆𝑆 + 𝜆 ∑ 𝛽௝ଶ௣௝ୀଵ ,  (2) 

where 𝜆 ≥  0 represents a tuning parameter. According to component 𝜆 ∑ 𝛽௝ଶ௝ , the shrinkage 

penalty is small when, 𝛽ଵ, … , 𝛽௣ are near zero, so it reduces the estimates of 𝛽௝ towards zero.  

Indeed, when 𝜆 =  0, the ridge regression will be comparable to least squares. However, 

in comparison to least squares, ridge produces a dissimilar group of coefficient estimates for 

distinctive values of 𝜆. Choosing the optimal value of 𝜆 can be achieved through cross-

validation. The shrinkage penalty is applied to 𝛽ଵ, … , 𝛽௣, but not to the intercept. If the data 

matrix X has a zero mean, then the intercept becomes 𝛽଴ = 𝑦௜ = ∑ ௬೔௡௡௜ୀଵ .  

The cross-validation process involves allotting all observations into λ folds, performed 

randomly and based on similar sizes. The first fold is considered the validation set, with the 

estimated model fitted on the remaining λ − 1 folds. Thereafter, the error value is calculated 

based on the model performance on the λ − 1 folds. Repeated λ times, the procedure treats a 

different fold as validation set every time. Consequently, the tuning parameter is chosen as 

based on the cross-validation rendering the smallest error. The final model applies the selected 

value of the tuning parameter in conjunction with the full set of observations. 

Compared to ordinary least squares, ridge regression improves through the bias-

variance trade-off, where a higher 𝜆 increases bias, but reduces variance. Given that the 

shrinkage penalty 𝜆 ∑ 𝛽௝ଶ௝  reduces all coefficients towards zero, yet none set exactly to zero, a 

shortcoming of the ridge approach involves a final model comprising all explanatory variables, 

even if their impact is trivial, which in the context of a high number of variables, could impact 

interpretability of results (James at al., 2013). 

In this study, hyperparameter settings employed include 𝛽௝ଶ = 0 and 𝜆 = 100. 

A4.2 Lasso 

Overcoming the drawback of the ridge approach, Santosa and Symes (1986) and Tibshirani 

(1996), devised the Least Absolute Shrinkage and Selection Operator or Lasso algorithm. 

Operationalized by minimising the equation  ∑ ൫𝑦௜ − 𝛽଴ − ∑ 𝛽௝𝑥௜௝௣௝ୀଵ ൯ଶ +௡௜ୀଵ 𝜆 ∑ |𝛽௝|௣௝ୀଵ = 𝑅𝑆𝑆 + 𝜆 ∑ |𝛽௝|௣௝ୀଵ ,  (1) 

where the ridge penalty 𝛽௝ଶ is replaced by the lasso penalty |𝛽௝|.  
For the lasso algorithm in the study, hyperparameter settings applied entail |𝛽௝| = 1 and 𝜆 = 100. 
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A5 Dimensionality Reduction Algorithm 

A5.1 Partial Least Squares (PLS) 

The procedure involves estimating PLS directions. The first PLS direction is computed by 

normalising the predictors 𝑝 and equating each ∅௝௠ in equation 𝑍௠ = ∑ ∅௝௠௣௝ୀଵ 𝑋௝ to the 

coefficients from the linear regression of Y onto 𝑋௝. As a consequence, the coefficients are 

proportional to the correlation between Y onto 𝑋௝. In computing the equation 𝑍ଵ =∑ ∅௝ୀଵ௣௝ୀଵ 𝑋௝, PLS put larger weights on the explanatory variables which are best related to the 

outcome.  

The second PLS direction is estimated by adjusting each predictor for 𝑍ଵ, achieved by 

regressing each predictor on 𝑍ଵ and computing their residuals. These residuals signify the 

unexplained information from the first PLS direction. Following, 𝑍ଶ can be estimated with the 

same approach as 𝑍ଵ, iterating 𝑀 number of times to detect multiple new features, 𝑍ଵ, … , 𝑍௠. 

Once this process is complete, ordinary least squares are employed to fit a model predicting Y 

using 𝑍ଵ, … , 𝑍௠. The number 𝑀 of partial least squares directions represents a tuning parameter 

which can be chosen using a cross-validation approach. If the predictors are highly correlated 

with each other, or if a smaller number of components accurately model the response, then the 

number of components in the PLS model would be less than the number of predictors. 

Dimension reduction procedure of PLS serves to reduce bias in existing datasets but faces 

lower accuracy when modelling new data. 

In this study, the PLS algorithm incorporates 10-fold cross-validation, repeated 10-

times, with the optimised number of principle components (ncomp) set to 3. 

A6 Decision Tree Algorithms 

A6.1 Full Tree 

The aim of the splitting procedures is to minimize a loss function, which is computed and 

directed by the divergence from an exact partitioning of respective crisis and no-crisis 

observations into their identifiable nodes. As based on Joy et al. (2017), the quantity of 

observations of class 𝑐 at node 𝑛 is represented by 𝑝(𝑐|𝑛). With binary outcomes of financial 

crises, class distribution can be denoted by (𝑝0, 𝑝1), in which case 𝑝0 signifies the probability 

of all no-crisis occurrences delineated into node 𝑛, while 𝑝1 demonstrates the probability of a 

crisis in node 𝑛. Divisions are estimated by the deviances within the child nodes. Skewer 
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distributions such as (0,1) comprise smaller deviances, with full divergence at (0.5,0.5). The 

Gini principle supports the dividing approach, with the aim to minimize the loss function 𝑐(𝑛): 𝑐௚௜௡௜(𝑛) = ∑ 𝑝0(𝑛)𝑝1(𝑛). The latter is consequently minimized when terminal nodes include 

either of two classes of incidents, systemic financial crisis or no-crisis.  

Tolerance levels of misclassification can be integrated through stipulation of weights, 

for instance not recognising a crisis, which could result in the identification of different 

predictors and their threshold levels. The partitioning process of forming tree branches ceases 

when the fall in the misclassification ratio is lower than the penalisation imposed on 

additionally produced terminal nodes. Analogously, this criterion is also employed to choose 

the best tree, with goodness of fit categorised as the optimal point between minimising the 

classification rate while bigger trees are penalised. Yet, terminal nodes are not always entirely 

uniform.  

In this study, the full tree algorithm only attempts splits which reduces the overall lack of fit 

by at least 0.001 (complexity parameter). Lower values are expected to be pruned away in the 

subsequent procedure. 

A6.2 Pruned Tree 

Following James at al. (2013), the decision tree equation can formally be denoted as  ∑ ∑ (𝑦௜ − 𝑦ොோ௠)ଶ௫೔∈ோ೘ + 𝛼|𝑇|௜்ୀଵ .    (1) 

While creating a full tree, cost complexity pruning is applied to the large tree in order to obtain 

a series of solid subtrees, as a function of 𝛼. K-fold cross-validation is performed to select the 

value of 𝛼 using the training data. By means of a forecast utilising the test dataset, the root 

mean squared error is obtained and assessed. Following, the average results across every value 

of 𝛼 are estimated, and subsequently a value of 𝛼 is selected that would minimize the average 

error. Lastly, the subtree associated with the chosen value of 𝛼 can be identified.  For this 

algorithm, the optimal size of tree nodes is set to 3 and used as part of the procedure to minimise 

the cross-validation error (xerror), and which determines the nodes to prune. 

A7 Ensemble Algorithms 

A7.1 Adaptive Boosting 

Mathematically, the training dataset consists of (𝑥ଵ + 𝑦ଵ), … , (𝑥ே + 𝑦ே), with weight vector 𝑤௜ଵ = 𝐷(𝑖) for 𝑖 = 1, … , 𝑁 and for 𝐷 the distribution over 𝑁. The quantity of iterations is 
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represented by  𝑇 = 1, 2, … , 𝑇. Initially, an equal set of weights 𝑤௧ is applied across 𝑁, with 

distribution 𝑝௧ = ௪೟∑ ௪೔೟೔ಿసభ , estimated by standardising the weights. The weak learner applies the 

distribution 𝑝௧ to produce a new prediction ℎ௧. In a test on the efficacy of the forecast, an error 

of ℎ௧  is computed through 𝜖௧ = ∑ 𝑝௜௧|ℎ௧(𝑥௜) − 𝑦௜ே௜ୀଵ |. For every iteration, the weak learner 

with lowest error is elected. The error is applied to determine the new weights vector 𝑤௜௧ାଵ =𝑤௜௧𝛽௧ଵି|௛೟(௫೟)ି௬೔| , where 𝛽௠ = ∈೟ଵି∈೟ is also incorporated to signify the contribution of the 

chosen weak learner to the last prediction of the strong learner. This process continues across 𝑇 where predictions are determined by ℎ௙(𝑥) =ቊ1   𝑖𝑓 ∑ ቀ𝑙𝑜𝑔 ଵఉ೟ቁ ℎ௧(𝑥)𝑓(𝑥) ≥ ଵଶ௜்ୀଵ ∑ ቀ𝑙𝑜𝑔 ଵఉ೟ቁ௜்ୀଵ0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                . 
Parameter settings applied in this paper encompass number of trees on 100, with 10-

fold cross-validation. The bootstrap sample of the training set is centred on the weights for 

every observation during each individual iteration.  

A7.2 Gradient Boosting 

Following Friedman (2001) and Döpke et al. (2017), mathematically, the algorithm bootstrap 

sample from training dataset {(𝑥௜ + 𝑦௜)}௜ୀଵே , with differentiable loss-function 𝐿(𝑦௜, 𝐹(𝑥)) to 

determine a negative gradient vector. The model is initialised with a constant, using F଴(x) =𝑎𝑟𝑔𝑚𝑖𝑛 ෌ L(y௜, 𝜌)ே௜ୀ௜ . For m = 1 to M, where the quantity of weak learners is capped, 

residuals are calculated for every sample 𝑦ప෥ = − ቂడ௅൫௬೔,ி(௫೔)൯డ ி(௫೔) ቃி(௫)ୀி೘షభ(௫), given where 

ቂడ௅൫௬೔,ி(௫೔)൯డ ி(௫೔) ቃ denotes the gradient derivative and 𝑦ప෥ pseudo residuals, computed using{(𝑦ప෥ −𝑔௠(𝑥௜)}௜ୀଵே . The following step involves fitting the regression tree to the predicted residuals. 

Commencing with each leaf in every tree, output is determined that minimizes the function γ௝௠ =  𝑎𝑟𝑔𝑚𝑖𝑛 ෌ L(y௜, 𝐹௠ିଵ(𝑥௜) + 𝛾)ே௫೔∈ோ೔ೕ , achieved by adopting the previous prediction 

value and the selected sub-sample. For following trees, a learning rate described by 𝜗, ranging 

from 0 to 1 is added to lessen the influence of a single tree on final output F௠(x) =  F௠ିଵ(x) +𝜗 ෍ 𝛾௝௠𝐼(𝑥 ∈ 𝑅௝௠)௃೘௝ୀଵ . Lastly, when m = M, the strong learner F௠(x) is computed as the sum 

of all weak learners, based on m = 0,…,M, which is adopted to make predictions using the out-

of-bag sample. 
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To process the model, maximum tree depth is set to 1 which denotes an additive model. 

Minimum number of observations per final node equals 10 with a shrinkage parameter of 0.1. 

The procedure is simulated 100 times for purposes of statistical inference. Maximum quantity 

of base learners is set to 100. And 50 percent of the training data is randomly elected to create 

each new weak learner in the stepwise technique.  

A7.3 Random Forests 

Based on Hastie et al. (2009), a tree T௕ using random forests is grown through the bootstrapped 

procedure until a minimum node size is reached. This process can be formulated as: 

 

(1) Choosing m variables at random, from the p variables. 

(2) Find the best split-point amongst the m variables. 

(3) Subsequently, split the parent node into two child nodes. 

(4) With the output of the trees encapsulated by {T௕}ଵ஻. 

Predictions at each new point 𝑥 can be executed through F஻௥௙(x) =  ଵ஻ ෌ T௕(𝑥)஻௕ୀଵ . 
To operationalise the random forests algorithm, initially the quantity of trees is set to 

1000, but the optimal number of trees necessary to calculate the minimum error estimate is 

consequently computed in the testing procedure and applied to predictions. 
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Table 2: Explanatory Indicators 
   

Indicator Definition Category 
GDP GDP per capita, first difference in logs Real 
CE Consumption expenditure, first difference in logs, two lags Real 
FCF Fixed capital formation, first difference in logs, one lag Real 
COR Fixed capital formation to GDP, first difference in logs Real 

DEBT Debt relative to GDP, first difference in logs Banking 
LOANS Total loans, in logs, one lag Banking 
STOCK Stock market, first difference in logs Banking 

CPI Consumer inflation, in logs Banking 
SR Short-term interest rates Banking 
LR Long-term interest rates Banking 
ER Exchange rate, first difference External 
CA Current account balance External 

 

  

 

Table 3: Number of Crises by Country   
 

 

Country Count of Crises 
Australia 2 
Belgium 7 
Canada 1 
Denmark 7 
Finland 5 
France 4 
Germany 6 
Italy 9 
Japan 6 
Netherlands 5 
Norway 4 
Portugal 5 
Spain 8 
Sweden 6 
Switzerland 5 
United Kingdom 4 
United States 6 
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Table 4: Unit Root Tests 
 

ADF – Fisher Test (Levels) 
Indicator Specification Inverse  

chi-squared 
Inverse 
normal 

Inverse logit t Modified inv.  
chi-squared 

GDP c,4 461.772*** -19.166*** -31.049*** 51.875*** 
CE c,4 469.377*** -19.365*** -31.561*** 52.797*** 
FCF c,4 478.482*** -19.491*** -32.172*** 53.901*** 
COR c,4 623.583*** -22.787*** -41.930*** 71.497*** 
DEBT c,4 448.313*** -18.337*** -30.112*** 50.242*** 
LOANS c,4     4.535    7.547    8.158  -3.573 
STOCK c,4 532.674*** -20.703*** -35.817*** 60.473*** 
CPI c,4     2.424    7.429    7.794  -3.829 
SR c,4   31.307   -0.504   -0.486  -0.326 
LR c,4   31.743   -0.254   -0.359  -0.273 
ER c,4 460.365*** -19.160*** -31.919*** 51.704*** 
CA c,4   83.126***   -1.985**   -3.191***   5.957*** 

Phillips-Perron – Fischer Test (Levels) 
GDP c,4 1165.212*** -32.556*** -78.350*** 137.179*** 
CE c,4 1168.767*** -32.613*** -78.590*** 137.610*** 
FCF c,4 1138.007*** -32.020*** -76.521*** 133.880*** 
COR c,4 1171.288*** -32.643*** -78.759*** 137.916*** 
DEBT c,4 1101.636*** -31.377*** -74.075*** 129.469*** 
LOANS c,4       3.095    8.190    9.194    -3.747 
STOCK c,4 1186.083*** -32.902*** -79.754*** 139.710*** 
CPI c,4      1.518    9.057    10.114    -3.938 
SR c,4     72.864***   -4.074***   -4.247***     4.713*** 
LR c,4     30.969   -0.684   -0.633    -0.367 
ER c,4 1138.229*** -32.265*** -78.919*** 133.907*** 
CA c,4     50.684**    0.202    0.461     2.023** 

 

Unit root tests are constructed using Augmented Dicky-Fuller (see Hamilton, 1994) and 
Phillips and Peron (see Phillips and Peron, 1988) procedures. Based on Choi (2001), four 
different methods are assessed to test the null hypothesis of a unit root across all panels, through 
an inverse 𝜒ଶ, inverse-normal, inverse-logit transformation and a modification of the inverse 𝜒ଶ transformation of the p-values. The latter is appropriate for N  .  
*** (**, *) denotes significance at 1%, (5%, 10%) 
 
 
 
 
 
 
 
 
 
 
 
 



 42

Table 5: Sample Means of Explanatory Indicators 
    

Indicators Y = 0 Y = 1 T-test 
Real Sector  

Gross domestic product per capita  0.002  0.000         0.017** 
Consumption expenditure  0.017  0.006         0.068* 
Fixed capital formation  0.105 -0.029         0.001** 
Capital output ratio -0.001  0.019         0.003** 
    

Banking Sector  
Debt to gross domestic product  0.007 -0.470         0.018** 
Total loans  5.913  4.457         0.052* 
Stock market  0.010 -0.076         0.215 
Consumer inflation  1.447  0.047         0.005** 
Short-term interest rates  4.806  6.053         0.000*** 
Long-term interest rates  5.591  5.655         0.003** 

    
External Sector  

Exchange rates  0.052  0.069         0.682 
Current account        -57591       -270219         0.012** 

    

T-test p-values: ***/**/* denotes 10%, 5%, 1% rejection of null hypothesis. 
 

 

Table 6: Probit Model Results 
 

 Lag Structure Optimal Contemporary Structure  
No. of observations:              
Constrained log-likelihood: 
Max. log-likelihood:              
LR-chiˆ2:                                  
AIC:  
BIC: 

2,431 
-375.147 
-354.944 
40.40*** 

0.303 
-18140.981 

2,414 
-374.526 
-338.919 
71.21*** 

0.292 
-18023.648 

Variable dy/dx dy/dx 
Gross domestic product per capita  0.556 (0.864) -1.212 (0.539) ** 
Consumption expenditure -0.353 (0.238)  0.404 (0.173) ** 
Fixed capital formation  0.007 (0.002) **  0.005 (0.002) ** 
Capital output ratio -0.056 (0.061)   0.110 (0.049) ** 
Debt to gross domestic product  0.003 (0.001) ** -0.004 (0.001) *** 
Total loans  0.001 (0.000)   0.001 (0.000) * 
Stock market -0.001 (0.005) -0.007 (0.004) * 
Consumer inflation -0.003 (0.001) ** -0.003 (0.001) *** 
Short-term interest rates  0.007 (0.002) ***  0.010 (0.002) *** 
Long-term interest rates -0.006 (0.002) *** -0.009 (0.002) *** 
Exchange rates -0.015 (0.025) -0.001 (0.005) 
Current account -0.000 (0.000) *  0.000 (0.000) * 
 

Margins with standard errors in brackets; *** (**, *) denotes significance at 1%, (5%, 10%) 
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Figure 3: Gradient Boosting: Variable Importance by Indicator 
 
 
 

Panel with Lag Structure   Panel with Contemporaneous Structure 

  
Figure 4: Gradient Boosting: Variable Importance by Sector 
 
 
 
 
 
 
 

0

10

20

30

40

50

18
86

18
93

19
00

19
07

19
14

19
21

19
28

19
35

19
42

19
49

19
56

19
63

19
70

19
77

19
84

19
91

19
98

20
05

20
12

Consumption Expenditure

0

10

20

30

40

50
18

86
18

93
19

00
19

07
19

14
19

21
19

28
19

35
19

42
19

49
19

56
19

63
19

70
19

77
19

84
19

91
19

98
20

05
20

12

GDP per Capita

0

10

20

30

40

50

18
86

18
93

19
00

19
07

19
14

19
21

19
28

19
35

19
42

19
49

19
56

19
63

19
70

19
77

19
84

19
91

19
98

20
05

20
12

Fixed Capital Formation

0

10

20

30

40

50

18
86

18
93

19
00

19
07

19
14

19
21

19
28

19
35

19
42

19
49

19
56

19
63

19
70

19
77

19
84

19
91

19
98

20
05

20
12

Debt-to-GDP

0

10

20

30

40

50

18
86

18
93

19
00

19
07

19
14

19
21

19
28

19
35

19
42

19
49

19
56

19
63

19
70

19
77

19
84

19
91

19
98

20
05

20
12

Capital Output Ratio

0

10

20

30

40

50

18
86

18
93

19
00

19
07

19
14

19
21

19
28

19
35

19
42

19
49

19
56

19
63

19
70

19
77

19
84

19
91

19
98

20
05

20
12

Loans

0

10

20

30

40

50

18
86

18
93

19
00

19
07

19
14

19
21

19
28

19
35

19
42

19
49

19
56

19
63

19
70

19
77

19
84

19
91

19
98

20
05

20
12

Stock Market

0

10

20

30

40

50

18
86

18
93

19
00

19
07

19
14

19
21

19
28

19
35

19
42

19
49

19
56

19
63

19
70

19
77

19
84

19
91

19
98

20
05

20
12

Consumer Inflation

0

10

20

30

40

50

18
86

18
93

19
00

19
07

19
14

19
21

19
28

19
35

19
42

19
49

19
56

19
63

19
70

19
77

19
84

19
91

19
98

20
05

20
12

Short-term Rates

0

10

20

30

40

50
18

86
18

93
19

00
19

07
19

14
19

21
19

28
19

35
19

42
19

49
19

56
19

63
19

70
19

77
19

84
19

91
19

98
20

05
20

12

Current Account

0

10

20

30

40

50

18
86

18
93

19
00

19
07

19
14

19
21

19
28

19
35

19
42

19
49

19
56

19
63

19
70

19
77

19
84

19
91

19
98

20
05

20
12

Exchange Rates

0

10

20

30

40

50

18
86

18
93

19
00

19
07

19
14

19
21

19
28

19
35

19
42

19
49

19
56

19
63

19
70

19
77

19
84

19
91

19
98

20
05

20
12

Long-term Rates

0%

20%

40%

60%

80%

100%

18
86

18
93

19
00

19
07

19
14

19
21

19
28

19
35

19
42

19
49

19
56

19
63

19
70

19
77

19
84

19
91

19
98

20
05

20
12

Real
Sector

Banking
Sector

External
Sector 0%

20%

40%

60%

80%

100%

18
86

18
94

19
02

19
10

19
18

19
26

19
34

19
42

19
50

19
58

19
66

19
74

19
82

19
90

19
98

20
06

20
14

Real
Sector

Banking
Sector

External
Sector



 44

Increase in Mean Squared Error (%)    Increase in Node Purity 

 
Figure 5: Random Forests: Variable Importance 
Table 9: Individual Country Recursive Out-of-Sample Forecasts in Pooled Format 

Country Base Linear Probit kNN SVM Ridge Lasso PLS Tree Prune Ada Boost RF 
Australia 0.610 0.918 0.943 0.500 0.752 0.674 0.539 0.500 0.498 0.557 0.621 0.436 0.656 
Belgium 0.583 0.614 0.674 0.500 0.493 0.552 0.529 0.500 0.736 0.708 0.622 0.722 0.636 
Canada 0.577 0.669 0.662 0.500 0.648 0.690 0.577 0.500 0.810 0.563 0.627 0.599 0.739 
Denmark 0.572 0.536 0.612 0.500 0.678 0.599 0.570 0.500 0.824 0.514 0.558 0.817 0.676 
Finland 0.445 0.835 0.752 0.500 0.715 0.843 0.537 0.500 0.560 0.491 0.561 0.729 0.811 
France 0.581 0.636 0.711 0.500 0.735 0.420 0.483 0.500 0.593 0.543 0.713 0.609 0.825 
Germany 0.482 0.603 0.543 0.500 0.458 0.589 0.529 0.500 0.502 0.505 0.503 0.562 0.535 
Italy 0.491 0.877 0.797 0.496 0.728 0.842 0.561 0.500 0.539 0.520 0.636 0.738 0.703 
Japan 0.648 0.563 0.514 0.500 0.633 0.564 0.600 0.500 0.628 0.600 0.701 0.673 0.565 
Netherlands 0.814 0.814 0.881 0.500 0.652 0.601 0.853 0.500 0.520 0.875 0.483 0.675 0.599 
Norway 0.574 0.517 0.586 0.500 0.689 0.656 0.511 0.500 0.532 0.541 0.660 0.550 0.596 
Portugal 0.567 0.665 0.765 0.496 0.565 0.609 0.747 0.500 0.591 0.607 0.662 0.568 0.614 
Spain 0.579 0.745 0.772 0.500 0.683 0.596 0.642 0.500 0.477 0.541 0.730 0.728 0.603 
Sweden 0.543 0.734 0.748 0.500 0.658 0.748 0.553 0.500 0.627 0.572 0.731 0.844 0.836 
Switzerland 0.509 0.657 0.478 0.493 0.619 0.488 0.508 0.500 0.539 0.553 0.700 0.810 0.719 
UK 0.485 0.748 0.771 0.500 0.709 0.580 0.580 0.500 0.723 0.526 0.654 0.748 0.843 
USA 0.689 0.837 0.697 0.500 0.701 0.633 0.686 0.500 0.587 0.645 0.812 0.627 0.821 

Table 10: Top Country Models from Contemporaneous Panel Format 
Country Top Model Top Model 

Accuracy 
Deviation to 
Baseline 

Overall deviation 
across all models 

Australia Probit           0.943            0.235            0.158  
Belgium Full Tree           0.736            0.108            0.087  
Canada Full Tree           0.810            0.165            0.089  
Denmark Full Tree           0.824            0.178            0.109  
Finland Ridge           0.843            0.281            0.146  
France Random Forests           0.825            0.173            0.117  
Germany Linear           0.603            0.086            0.042  
Italy Linear           0.877            0.273            0.140  
Japan Adaptive Boosting           0.701            0.037            0.065  
Netherlands Probit           0.881            0.047            0.155  
Norway Support Vector Machine           0.689            0.081            0.064  
Portugal Probit           0.765            0.140            0.081  
Spain Probit           0.772            0.136            0.102  
Sweden Gradient Boosting           0.844            0.213            0.121  
Switzerland Gradient Boosting           0.810            0.213            0.108  
UK Random Forests           0.843            0.253            0.121  
USA Linear           0.837            0.105            0.109  
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Table 12: Individual Country Recursive Out-of-Sample Forecasts in Independent Format 
Country Base Linear Probit kNN SVM Ridge Lasso PLS Tree Prune Ada Boost RF 
Australia 0.888 0.576 0.647 0.500 0.546 0.961 0.508 0.500 0.422 0.888 0.945 0.470 0.686 
Belgium 0.628 0.674 0.580 0.496 0.529 0.547 0.606 0.496 0.577 0.593 0.685 0.482 0.515 
Canada 0.918 0.527 0.781 0.500 1.000 0.844 0.918 0.500 0.449 0.918 0.879 0.875 0.633 
Denmark 0.696 0.689 0.573 0.500 0.682 0.771 0.696 0.500 0.621 0.629 0.931 0.747 0.732 
Finland 0.749 0.694 0.504 0.500 0.652 0.747 0.749 0.500 0.663 0.777 0.641 0.646 0.632 
France 0.578 0.399 0.550 0.500 0.452 0.810 0.579 0.496 0.550 0.567 0.647 0.746 0.678 
Germany 0.469 0.721 0.508 0.596 0.634 0.661 0.561 0.500 0.735 0.423 0.589 0.668 0.634 
Italy 0.635 0.515 0.635 0.500 0.468 0.419 0.635 0.500 0.620 0.407 0.489 0.565 0.603 
Japan 0.585 0.477 0.752 0.500 0.510 0.644 0.585 0.500 0.473 0.585 0.512 0.466 0.648 
Netherlands 0.751 0.583 0.670 0.500 0.351 0.698 0.686 0.500 0.371 0.751 0.562 0.740 0.412 
Norway 0.745 0.569 0.556 0.492 0.418 0.746 0.661 0.500 0.494 0.719 0.844 0.588 0.521 
Portugal 0.700 0.776 0.615 0.484 0.595 0.494 0.627 0.492 0.749 0.614 0.850 0.710 0.640 
Spain 0.690 0.785 0.642 0.496 0.621 0.540 0.691 0.500 0.584 0.675 0.450 0.754 0.485 
Sweden 0.428 0.653 0.550 0.496 0.626 0.710 0.762 0.500 0.599 0.685 0.748 0.706 0.597 
Switzerland 0.748 0.642 0.519 0.500 0.814 0.547 0.690 0.500 0.440 0.736 0.578 0.606 0.671 
UK 0.741 0.600 0.614 0.488 0.564 0.478 0.469 0.500 0.465 0.871 0.787 0.606 0.384 
USA 0.677 0.821 0.618 0.496 0.555 0.729 0.579 0.492 0.626 0.614 0.718 0.606 0.568 

 

Table 13: Top Country Models from Independent Format 

Country Top Model Top Model 
Accuracy 

Deviation to 
Baseline 

Overall deviation 
across all models 

Australia Ridge 0.961 0.052 0.197 
Belgium Adaptive Boosting 0.685 0.040 0.067 
Canada Support Vector Machine 1.000 0.058 0.198 
Denmark Adaptive Boosting 0.931 0.166 0.116 
Finland Pruned Tree 0.777 0.020 0.097 
France Ridge 0.810 0.164 0.115 
Germany Full Tree 0.735 0.188 0.096 
Italy Lasso 0.635 0.000 0.083 
Japan Probit 0.752 0.118 0.086 
Netherlands Pruned Tree 0.751 0.000 0.146 
Norway Adaptive Boosting 0.844 0.070 0.127 
Portugal Adaptive Boosting 0.850 0.106 0.113 
Spain Linear 0.785 0.067 0.109 
Sweden Lasso 0.762 0.236 0.104 
Switzerland Support Vector Machine 0.814 0.047 0.113 
UK Pruned Tree 0.871 0.092 0.143 
USA Linear 0.821 0.102 0.094 

 
 
 


