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A Scheme for Jointly Trading-off Costs and Risks of Solar Radiation Management and 

Mitigation Under Long-tailed Climate Sensitivity Probability Density Distributions 

Elnaz Roshan1*, Mohammad M. Khabbazan1 2, Hermann Held1 

 

Abstract  

Side-effects of “solar-radiation management” (SRM) might be perceived as an important 

metric when society decides on implementing SRM as a climate policy option to alleviate 

anthropogenic global warming. We generalize cost-risk analysis that originally trades-off expected 

welfare-loss from climate policy costs and risks from transgressing climate targets to also include 

risks from applying SRM. In a first step of acknowledging SRM risks, we represent global 

precipitation mismatch as a prominent side-effect of SRM under long-tailed probabilistic 

knowledge about climate sensitivity. We maximize social welfare for the following three 

scenarios, considering alternative relative weights of risks: temperature-risk-only, precipitation-

risk-only, and equally-weighted both-risks. Our analysis shows that in the temperature-risk-only 

scenario, perfect compliance with the 2°C-temperature target is attained for all numerically 

represented climate sensitivities, a unique feature of SRM, but the 2°C-compatible precipitation 

corridor is violated. The precipitation-risk-only scenario exhibits an approximate mirror-image of 

this result. In addition, under the both-risks scenario, almost 90% and perfect compliance can be 

achieved for the temperature and precipitation targets, respectively. Moreover, in a mitigation-

only analysis, the welfare-loss from mitigation cost plus residual climate risks, compared to the 
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no-climate-policy option, is approximately 4.3% (BGE), while being reduced to a maximum of 

0.38% under a joint-mitigation-SRM analysis. 

Keywords: climate targets; cost-risk analysis; decision making under uncertainty; mitigation; 

solar-radiation management. 

1 Introduction 

Aerosol Solar Radiation Management (SRM) gained prominence as a climate policy option 

through the study by Crutzen (2006). SRM is defined as any deliberate large-scale manipulation 

of the planetary albedo to reduce surface temperature and counteract the risks of climate change 

caused by greenhouse gas (GHG) emissions (Kravitz et al. 2013a; MacMartin et al. 2014). Aerosol 

SRM is technically feasible and, compared to other climate policy options, a relatively inexpensive 

way to quickly offset anthropogenic global warming (Crutzen 2006; Goes et al. 2011; Keith 2000; 

Matthews and Caldeira 2007; McClellan et al. 2012; Robock et al. 2009; Shepherd et al. 2009). 

However, severe potential side effects are identified for SRM, such as a mismatch in global mean 

temperature and global mean precipitation compensation, ozone depletion, and a mismatch in 

spatial patterns of various climate variables (Bala et al. 2008; Barrett et al. 2014; Crutzen 2006; 

Kravitz et al. 2013a; Kravitz et al. 2013b; Lunt et al. 2008; Robock et al. 2008; Schmidt et al. 

2012; Tilmes et al. 2013; Tilmes et al. 2008). While most extant SRM literature has discussed 

these in isolation, here we start with the hypothesis that society will make decisions on SRM in 

weighing them against costs and risks in view of alternative climate policy options, such as 

mitigation. Therefore, we strive for an integrated analysis of SRM and mitigation by pursuing a 

welfare-based portfolio approach.  
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In fact, Smith and Rasch (2013) evaluated SRM in conjunction with mitigation for a limited 

set of pre-defined, RCP-inspired mitigation scenarios, and investigated the role of SRM in meeting 

a pre-defined temperature target, depending on the degree of mitigation encapsulated in the 

scenario, as well as climate sensitivity (linking equilibrium temperature rise and greenhouse gas 

concentration). They found that the contribution of SRM increases with climate sensitivity, while 

mitigation and SRM act as substitutes. However, they did not seek welfare-optimal portfolios of 

mitigation and SRM.  

This, in turn, was done by Goes et al. (2011), Moreno-Cruz and Keith (2013), Bahn et al. 

(2015), Heutel et al. (2016), Emmerling and Tavoni (2018), and Heutel et al. (2018), who 

implemented SRM jointly with mitigation in a cost-benefit analysis (CBA), the axiomatically most 

developed decision-analytic framework thus far. Here, we follow an alternative approach in 

utilizing a global temperature target as an entry-point for further analysis. We do so for two 

reasons. Firstly, some fraction of the climate economists’ community asserts that currently 

applying CBA to the climate problem carries conceptual difficulties. Extant deep uncertainties 

regarding the necessary global warming impact function and imprecise weighing of the costs and 

benefits would lead to rather non-robust results (Kolstad et al. 2014; Kunreuther et al. 2014). 

Therefore, additional studies on global warming impacts and their valuation might be requisite, at 

least to determine a probabilistic representation of the aggregate global warming impact function. 

Instead, compliance with an environmental target can be interpreted as an operationalization of the 

precautionary principle in view of deep uncertainty. Secondly, one could take temperature targets 

embraced at the latest Conferences of the Parties (UNFCCC 2015) as boundary conditions, and 

elucidate a cost-efficient scenario to comply with this environmental boundary condition (cost 

effectiveness analysis, CEA). In fact, on the order of a thousand scenarios are assembled in the 
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latest IPCC report (Clarke et al. 2014), that are based on climate targets in conjunction with CEA, 

rather than on CBA. Arino et al. (2016), Ekholm and Korhonen (2016), Emmerling and Tavoni 

(2018), and Stankoweit et al. (2015) evaluated SRM together with mitigation applying CEA. With 

this article, we aim to serve those readers who acknowledge value in utilizing climate targets as 

entry assumptions for further economic analysis. 

In the following, we generalize the target-concept to simultaneously cover the currently most 

discussed potential side-effect of SRM, and an infinitely-tailed probability density function on 

climate sensitivity. For this article, we focus on the following side effect. SRM might perfectly or 

in part compensate for greenhouse gases in terms of global mean temperature, but might prove 

unable to simultaneously do so for other climate variables, such as precipitation. The underlying 

reason is that SRM and greenhouse gases act on the climate system through different spatial 

symmetries. For this reason, for several climate variables, applying SRM destroys their scaling 

with global mean temperature. Consequently, for those variables, global mean temperature 

anomaly without specifying the cause of the anomaly, i.e., carbon dioxide vs. SRM, ceases to 

constitute a useful environmental proxy. Therefore, we focus on global mean precipitation as one 

additional climate variable that would be detached from global mean temperature through SRM. 

This builds a methodological extension to link the scientific community's understanding of key 

environmental side-effects of SRM and the policy makers' need for decision making based on the 

current best available information. While considering regional precipitation is closer to the 

society’s need for policy making, here we demonstrate a concept for the global case which allows 

for a more transparent and tractable analytical and numerical analysis. Thus, results of a globally-

aggregated analysis presented in this investigation should be interpreted with caution because main 

side-effect of SRM arises with regionalization.  
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In order to tackle this problem, yet remain as close to the target concept as possible, Stankoweit 

et al. (2015) suggested not to completely switch paradigms towards a full-fledged impact analysis, 

but rather to move only one step further down the impact chain. Following them, we explicitly 

model global precipitation and derive an explicit target for it. Similarly we obtain this target from 

asking, assuming a global temperature target of 2°C, “What precipitation change would a 

proponent of the 2°C temperature target have accepted before SRM was ever considered in global 

climate policy?” (the latter denotes a phase when the 2°C temperature target was negotiated). In 

this way, we derive a 2°C-compatible precipitation target.  

Furthermore, due to a long-tailed probability density distribution on climate sensitivity, it is 

necessary to interpret global mean temperature targets probabilistically (den Elzen and van Vuuren 

2007; Held et al. 2009). Target-based analyses, as assembled in Clarke et al. (2014), correspond 

to generic compliance probabilities of 1/2 or 1/3. However, when future learning on climate 

sensitivity is included in intertemporal welfare analysis, lexicographic preferences induced by 

targets would produce inconsistencies. In order to resolve these conceptual problems, cost-risk 

analysis (CRA) was proposed by Schmidt et al. (2011) and operationalized by Neubersch et al. 

(2014).  

CRA is indeed a hybrid framework of CBA and CEA, which is utilized as a decision-analytic 

framework that allows for including targets in an economic analysis in a dynamically consistent 

manner, while not explicitly requiring a climate damage function. However, CRA necessarily 

requires a climate target as an input since the risk in this framework is defined as overshooting the 

climate target (Held 2019; Neubersch et al. 2014).  
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Roshan et al. (2019) evaluated the optimal SRM in conjunction with mitigation applying   CRA 

and considering regional disparities in the temperature and precipitation risks. However, their 

analysis only includes a numerical investigation which can weakly answer the basic research 

questions regarding the methodology and results. To the best of our knowledge, hereby for the first 

time, we apply an analytical integrated cost-risk analysis (CRA) of mitigation and SRM 

considering climate risks, which is supported by an integrated climate-energy-economy 

assessment model. We seek the optimal mix of mitigation and SRM under probabilistic knowledge 

about climate sensitivity. This decision criterion is based on welfare maximization which trades-

off between economic costs of climate policies, here mitigation and SRM, and the risk of 

transgressing the climate targets. Here, we introduce two risks: the risk of temperature rise, and 

the risk of precipitation change. SRM is a symptomatic approach that would not affect the root 

cause of the climate change but rather its symptoms particularly global warming. While 

acknowledging the importance of considering CO2 concentrations as in Heutel et al. (2018) in 

SRM research, our focus is on temperature target because international climate targets are 

articulated in global mean temperature limit. Our analysis is based on the 2°C-temperature target 

with 66% compliance probability, which is derived from UNFCCC’s agreement in 2011 

(UNFCCC 2011). The admissible precipitation corridor is determined by those values of 

precipitation that can be found in the absence of SRM when increasing global mean temperature 

from the pre-industrial state to 2°C. Consequently, the precipitation corridor represents those 

deviations from pre-industrial precipitation that are compatible with the preference order, as 

expressed by the 2°C target. In our analysis, climate sensitivity is the key uncertain parameter and 

formally represented here through a log-normal probability density distribution (Lorenz et al. 

2012; Neubersch et al. 2014; Wigley and Raper 2001). 
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To represent the cost-risk of joint-mitigation-SRM analysis, we apply the model MIND (model 

of investment and technological development) (Edenhofer et al. 2005; Held et al. 2009; Lorenz et 

al. 2012; Neubersch et al. 2014) as an integrated energy-economy-climate model. Generally, 

MIND is a renewable-fossil distinguishable model based on a Ramsey-type macroeconomic 

growth model.  

2 Cost-Risk Analysis 

In order to clarify some unique concepts of CRA, we discuss the static problem. In the static 

minimization problem of CRA (Equation 1), a convex decision problem is needed to prevent the 

local optima and switching to a different regime of optimum (under a relatively small change of 

emissions or climate sensitivity), which would not be in compliance with the value system of the 

proponents of temperature targets (Neubersch et al. 2014). To ensure that this is valid for any 

degrees of convexity of mitigation and SRM cost-functions, temperature and precipitation risk 

functions need to be non-concave. Linear risk metrics constitute the most conservative functions 

that we can choose which leads to a convex decision problem. For the mitigation cost 𝐶𝑀, SRM 

cost 𝐶𝑆𝑅𝑀, trade-off parameters α and β, risk due to high temperature RT, and risk of precipitation 

change RP, the static optimization problem reads: 

  𝑀𝑖𝑛  {𝐶𝑀 + 𝐶𝑆𝑅𝑀 +  𝛼 𝔼(𝑅𝑃) +  𝛽 𝔼(𝑅𝑇)}                                      (1)                  𝔼(𝑅𝑇) = ∫ 𝑓 (𝛾) 𝛷(𝑇 − 𝑇𝑔) (𝑇 − 𝑇𝑔)  𝑑𝛾                                       (2) 𝔼(𝑅𝑃) =  ∫ 𝑓(𝛾) [𝛷(𝑃 − 𝑃𝑢𝑏) (𝑃 − 𝑃𝑢𝑏)  +  𝛷(𝑃𝑙𝑏 − 𝑃) (𝑃𝑙𝑏 − 𝑃)] 𝑑𝛾               (3) 

Linear risk metrics are defined as the probability of climate targets’ violation proposed by 

Neubersch et al. (2014) for temperature risk, and we develop it for precipitation risk, which are 

respectively represented in Equations 2 and 3; 𝑓(𝛾), Φ, 𝑇𝑔, 𝑃𝑢𝑏, and 𝑃𝑙𝑏, respectively, refer to the 
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probability density distribution of climate sensitivity 𝛾, the Heaviside function (0 for negative 

arguments and 1 otherwise), the temperature target, upper-bound precipitation, and lower-bound 

precipitation. Uncertainty in climate response is a critical feature of the climate problem. To 

account for this facet, we consider probabilistic knowledge of climate sensitivity with a log-normal 

density distribution  𝑓(𝛾) ~ 𝐿𝑛 𝒩( 𝜇 , 𝜎), in our work μ = 0.973 and σ = 0.4748  (Wigley and 

Raper 2001), which represents a somewhat centered distribution that mediates between fat-tailed 

(Roe and Baker 2007) and thin-tailed (Schneider von Deimling et al. 2006) distributions. In our 

numerical simulations, the sample number is 20 with equal probability within the range of 1.01°C 

to 7.17°C, which is chosen with the same approach as Lorenz et al. (2012).  

As an environmental target, we choose the temperature target of 2°C maximum increase in 

global mean temperature anomaly with respect to pre-industrial climate and recognized by the 

UNFCCC’s 15th COP in 2010. It is worth noting that we assess temperature and precipitation on 

the global and global-land scale, respectively. The global-land precipitation anomaly is linearly 

related to the global mean temperature change induced by SRM and CO2 emissions. We infer the 

coefficient of CO2-induced temperature change from the CO2-quadrupling experiment in Schmidt 

et al. (2012). We use temperature and precipitation change within the G1 experiment of GeoMIP 

and CO2-quadrupling experiment from Schmidt et al. (2012) to simply derive the SRM-induced 

precipitation change coefficient through G1-abrupt4×CO2.  

We apply a CRA-based welfare functional that would cope with SRM destroying global mean 

temperature as a proxy for most climate variables. In generalizing the static model, we readily 

obtain: 

 𝑀𝑎𝑥  𝑊 = ∑ ∑ 𝑝𝑠 [𝑈(𝑡, 𝑠) − 𝛼 𝑅𝑃(𝑡, 𝑠) − 𝛽 𝑅𝑇(𝑡, 𝑠)] 𝑒−𝜌𝑡𝑠𝑒𝑛𝑑𝑠1𝑡𝑒𝑛𝑑𝑡=0                          (4) 
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where t, s, p, U, and 𝜌 represent time, state of the world (SOW, climate sensitivity), probability of 

each SOW, utility, and rate of pure time preference, respectively; and 𝛼 and 𝛽 are the trade-off 

parameters.  

CRA makes a trade-off between the costs of reducing climate warming and excess climate risk. 

A trade-off parameter shows how important the risk of climate change is for society (Neubersch 

et al. 2014). Therefore, trade-off parameters are calibrated, such that welfare is maximized with at 

least 66% probability (according to IPCC guidance note on uncertainty, the equivalent term is 

‘likely’) of remaining below the 2°C-temperature target without considering anticipated future 

learning and in the absence of SRM. This is according to 17th COP to the UNFCCC that “aggregate 

emissions pathways consistent with having a likely chance of holding the increase in global 

average temperature below 2°C or 1.5°C above pre-industrial level” (UNFCCC 2011). The 

calibration is simulated in a mitigation-only analysis excluding SRM because the 2°C-temperature 

target is a political argument in line with mitigation. Equation 4 still leaves one degree of freedom 

between α and β. In addition, the larger α, the larger the relative weight precipitation has had in 

the making of the 2°C target. This is currently a normative choice determining to what extent an 

explicit representation of global precipitation risk would make the precautionary approach 

encapsulated in the 2°C target obsolete.  

We consider three scenarios accordingly, in which for two extreme cases of temperature-risk-

only and precipitation-risk-only scenarios, we only account for temperature risk and precipitation 

risk, respectively. As an in-between scenario, in the both-risks scenario, we use half of any of the 

calibrated parameters to weigh both risks equally. This choice of scenarios is in order to follow a 

convex combination in accounting for temperature and precipitation risks in the decision profile.  

This means that the weight of one risk can be increased only if the other risk’s weight is reduced. 
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While precipitation is linearly related to temperature and its upper-bound is 2°C-compatible, in 

order to avoid double counting, a convex combination of risks should be taken into account; 

otherwise, 66% compliance would not be recovered.  𝑅𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 𝑝𝑠 [𝜖 𝛽 𝑅𝑇(𝑡, 𝑠) + (1 − 𝜖) 𝛼 𝑅𝑃(𝑡, 𝑠)] 𝑒−𝜌𝑡𝑠𝑒𝑛𝑑𝑠1𝑡𝑒𝑛𝑑𝑡=0                        (5)                                              

Equation 5 presents the convex combination of expected discounted temperature and precipitation 

risks. The combination parameter, 𝜖, shows the weight of each risk from 0 to 1. Scenarios in this 

study present three combinations of risks for 𝜖 that equal 0, 1/2, and 1 (see Figure A1 in the 

Appendix, which shows the sensitivity analysis on 100 different values of ϵ  ranging between 0 

and 1 in a mitigation-only analysis). 

3 A Stylized Theoretical Model  

3-1 𝜷 Calibration 

Before presenting numerical results, to guide intuition, we first introduce a stylized static 

model representing a simplification of the decision problem as expressed by Equation 4. For this, 

we firstly derive a theoretical solution for the trade-off parameter in the cost-risk framework. To 

do so, for conceptual clarity, we use the static CRA in the temperature-risk-only scenario of the 

mitigation-only analysis. For mitigation cost  𝐶𝑀(𝐸𝐶𝑂2) as a function of CO2 cumulative emissions 𝐸𝐶𝑂2  (𝐶′𝑀(𝐸𝐶𝑂2) ≤ 0 , 𝐶′′𝑀(𝐸𝐶𝑂2) ≥ 0), a temperature anomaly 𝑇 = 𝛾 𝑎 𝐸𝐶𝑂2, and temperature 

risk  𝑅𝑇(𝐸𝐶𝑂2), the minimization problem in this scenario reads: 

𝑀𝑖𝑛𝐸𝐶𝑂2       for  𝑙: = 𝐶𝑀(𝐸𝐶𝑂2) + 𝛽 𝔼(𝑅𝑇(𝐸𝐶𝑂2))                                        (6)          

In this equation, temperature is the only variable that depends on climate sensitivity  𝛾, the 

knowledge of which we express through a log-normal probability density distribution f.  
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As explained in the previous section, the calibration of the trade-off parameter is performed in 

accordance with the statement of the COP17 to reach a minimum safety of 66% (𝑝𝑔) probability 

of compliance with the 2°C-temperature target (𝑇𝑔). Hereby, the subscript ‘𝑔’ denotes ‘guardrail’. 

Similar to Neubersch (2014), by minimizing Equation 6 to reach this calibration goal, 𝛽 equals: 

𝛽 = − 𝐶′𝑀(𝐸𝐶𝑂2,𝑔)𝑑𝑑𝐸𝐶𝑂2𝔼(𝑅𝑇(𝐸𝐶𝑂2,𝑔)                                                          (7) 

When determining a Taylor expansion of the cost function at the business-as-usual (BAU, no 

climate policy) emission level, the leading order must be the quadratic one. This ensures that BAU 

is optimal in the absence of climate risk. 

𝐶𝑀(𝐸𝐶𝑂2) = 𝑘 (𝐸𝐶𝑂2 − 𝐸𝐵𝐴𝑈)2                                                 (8) 

We now derive a calibrated version of 𝛽 for later numerical estimations. For this, the expected 

temperature risk needs to be calculated as shown in Equations 9 and 10. 

𝔼 [𝑅 (𝑇(𝐸𝐶𝑂2))] = ∫ (𝑇 − 𝑇𝑔)𝑓(𝛾)𝑑𝛾∞𝛾𝑔                                          (9) 

     𝔼 [𝑅 (𝑇(𝐸𝐶𝑂2))] = 12 (𝑎𝑒𝜇+𝜎22  𝐸𝐶𝑂2(1 + 𝐸𝑟𝑓[𝜇+𝜎2−𝐿𝑛 𝛾𝑔√2𝜎 ]) + 𝑇𝑔(−2 + 𝐸𝑟𝑓𝑐[𝜇−𝐿𝑛 𝛾𝑔√2𝜎 ]))       (10) 

From this,3 we can calculate 𝛽:  

𝛽 = 4𝑘 (𝐸𝐵𝐴𝑈−𝐸𝐶𝑂2,𝑔)𝑎ⅇ𝜇+𝜎22  (1+𝐸𝑟𝑓[𝜇+𝜎2−𝐿𝑛 𝛾𝑔√2𝜎 ])                                                   (11) 

                                                            
3 Note that the complement error function of x, 𝐸𝑟𝑓𝑐[𝑥], equals 1 − 𝐸𝑟𝑓[𝑥], where 𝐸𝑟𝑓[𝑥] is the error function of x. 
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3-2 Joint-Mitigation-SRM Analysis: Optimal Emissions, Optimal SRM Forcing, and 

Minimum Climate Sensitivity 

Here, we continue the theoretical solution to determine optimal emissions and SRM forcing in 

the cost-risk framework. Considering probabilistic climate sensitivity, we can provide information 

about the borderline climate sensitivity, for which the temperature threshold might be trespassed 

when we apply SRM. Similarly, we use the static CRA of the temperature-risk-only scenario while 

including SRM. We utilize the above assumptions on the mitigation cost function. For the SRM 

cost function 𝐶𝑆𝑅𝑀(𝐹𝑆𝑅𝑀), we choose the SRM forcing 𝐹𝑆𝑅𝑀 as a variable with 𝐶′𝑆𝑅𝑀(𝐹𝑆𝑅𝑀) ≥ 0.  
The temperature risk then reads  𝑅𝑇(𝐸𝐶𝑂2 , 𝐹𝑆𝑅𝑀), and the minimization problem is: 

Min 𝐸𝐶𝑂2 ,𝐹𝑆𝑅𝑀  l    for  𝑙: = 𝐶𝑀(𝐸𝐶𝑂2) + 𝐶𝑆𝑅𝑀(𝐹𝑆𝑅𝑀) + 𝛽 𝔼(𝑅𝑇(𝐸𝐶𝑂2 , 𝐹𝑆𝑅𝑀))               (12)          

For  𝑇 = 𝛾 (𝑎 𝐸𝐶𝑂2 − ℎ 𝐹𝑆𝑅𝑀), expected temperature risk, shown in Equation 2, can be rewritten 

as  𝔼(𝑅𝑇) = ∫ (𝑇 − 𝑇𝑔)𝑓(𝛾)𝑑𝛾∞𝛾𝑔 , where 𝛾𝑔 is the minimum climate sensitivity for which 

temperature risk exists. This means that 𝛾𝑔 is where 𝑇 > 𝑇𝑔 (i.e.,  𝛾(𝑎 𝐸𝐶𝑂2 − ℎ 𝐹𝑆𝑅𝑀) > 𝑇𝑔 → 𝛾 > 𝑇𝑔𝑎 𝐸𝐶𝑂2−ℎ 𝐹𝑆𝑅𝑀  , 𝛾𝑔 = 𝑇𝑔𝑎 𝐸𝐶𝑂2−ℎ𝐹𝑆𝑅𝑀). 

Therefore, the expanded minimization problem, 𝑙, is: 

𝑙 = 𝐶𝑀(𝐸𝐶𝑂2) + 𝐶𝑆𝑅𝑀(𝐹𝑆𝑅𝑀) + 𝛽 ∫ ( 𝛾 𝑎 𝐸𝐶𝑂2 − 𝛾 ℎ 𝐹𝑆𝑅𝑀 − 𝑇𝑔)𝑓(𝛾)𝑑𝛾∞𝛾𝑔            (12-1) 

The first-order condition for this two-variable problem is: 

𝜕𝑙𝜕𝐸𝐶𝑂2 = 𝐶′𝑀(𝐸𝐶𝑂2) +  𝛽(∫ (𝜕 𝑇𝜕𝐸𝐶𝑂2) 𝑓(𝛾)𝑑𝛾 − (𝑇(𝛾𝑔) − 𝑇𝑔)𝑓( 𝛾𝑔)∞
𝛾𝑔 ( 𝜕𝛾𝑔𝜕𝐸𝐶𝑂2)) 

(𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑡𝑒𝑟𝑚 𝑣𝑎𝑛𝑖𝑠ℎ𝑒𝑠 𝑏𝑦 𝑑𝑒𝑓𝑖𝑛𝑡𝑖𝑜𝑛)                                                                               (13)                                                                              
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𝜕𝑙𝜕𝐹𝑆𝑅𝑀 = 𝐶′𝑆𝑅𝑀(𝐹𝑆𝑅𝑀) +  𝛽(∫ (𝜕 𝑇𝜕𝐹𝑆𝑅𝑀) 𝑓(𝛾)𝑑𝛾 − (𝑇( 𝛾𝑔) − 𝑇𝑔)𝑓( 𝛾𝑔)∞
𝛾𝑔 ( 𝜕𝛾𝑔𝜕𝐹𝑆𝑅𝑀)) 

(𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑡𝑒𝑟𝑚 𝑣𝑎𝑛𝑖𝑠ℎ𝑒𝑠 𝑏𝑦 𝑑𝑒𝑓𝑖𝑛𝑡𝑖𝑜𝑛)                                                                              (14)                                                                        

𝜕𝑙𝜕𝐸𝐶𝑂2 = 𝐶′𝑀(𝐸𝐶𝑂2) + 𝛽𝑎 ∫ 𝛾 𝑓(𝛾)𝑑𝛾∞ 𝛾𝑔 = 0                                 (13-1) 

𝜕𝑙𝜕𝐹𝑆𝑅𝑀 = 𝐶′𝑆𝑅𝑀(𝐹𝑆𝑅𝑀) − 𝛽ℎ ∫ 𝛾𝑓(𝛾)𝑑𝛾∞ 𝛾𝑔 = 0                                (14-1) 

From Equations 13-1 and 14-1, we know that the optimum will be where:  

ℎ𝐶′𝑀(𝐸𝐶𝑂2)= − 𝑎𝐶′𝑆𝑅𝑀(𝐹𝑆𝑅𝑀).                                                (15)                              

In analogy to the mitigation cost function, we now determine the leading order term of Taylor 

expansion at BAU for the SRM cost function. As the SRM forcing cannot be positive, it is here 

the linear term that ensures BAU is optimal in the absence of climate risk. Therefore, assuming a 

quadratic mitigation cost function and a linear SRM cost function, such as: 

𝐶𝑀(𝐸𝐶𝑂2) = 𝑘 (𝐸𝐶𝑂2 − 𝐸𝐵𝐴𝑈)2                                                 (16) 

𝐶𝑆𝑅𝑀(𝐹𝑆𝑅𝑀) = 𝑞 𝐹𝑆𝑅𝑀                                                       (17) 

Exploiting Equations 16 and 17 in Equation 15 reveals  

𝐸𝐶𝑂2 = 𝐸𝐵𝐴𝑈 −  𝑎𝑞2𝑘ℎ                                                              (18) 

at the optimum. For vanishing SRM cost, optimal emissions approach BAU emissions. 
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To calculate the optimal SRM forcing, we solve Equation 14-1,4 and we obtain: 

𝐹𝑆𝑅𝑀 = 𝑎ℎ  (𝐸𝐵𝐴𝑈 −  𝑎𝑞2𝑘ℎ) − 𝑇𝑔ℎ  𝑒√2  𝜎  𝐼𝑛𝑣ⅇ𝑟𝑠ⅇ𝐸𝑟𝑓[ 2 𝑞𝛽ℎ𝔼(𝛾) −1]−𝜇−𝜎2
                       (19) 

For a scenario with very low (near zero) SRM cost, the optimal SRM forcing would be equal to 𝑎ℎ  𝐸𝐵𝐴𝑈, where 𝐸𝐶𝑂2 = 𝐸𝐵𝐴𝑈. This means that SRM will perfectly compensate for temperature rise 

from emissions. 

In theory, in the cost-risk analysis of the joint-mitigation-SRM, the following question may 

arise, “What is the borderline climate sensitivity for which the temperature threshold might be 

trespassed in a temperature-risk-only scenario?” As explained earlier in this section, we know 

that  𝛾𝑔 = 𝑇𝑔𝑎𝐸𝐶𝑂2−ℎ𝐹𝑆𝑅𝑀. 

We now solve this equation to derive 𝛾𝑔: 

𝛾𝑔 =  𝑒𝜇+𝜎2−√2  𝜎  𝐼𝑛𝑣ⅇ𝑟𝑠ⅇ𝐸𝑟𝑓[2 𝐶′𝑆𝑅𝑀(𝐹𝑆𝑅𝑀)𝛽 ℎ𝔼(𝛾) −1] 
                                    (20) 

                                                            
4 The complete solution to solve Equation 14-1 is explained in Appendix B. 
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We can see in this equation that SRM cost is a significant factor in determining the borderline 

climate sensitivity. Minimum climate sensitivity, for which the temperature target would be 

transgressed, goes toward infinity for near zero SRM cost.  

 

Figure 1. Optimal emissions (a) and minimum climate sensitivity (b) against SRM costs derivative, for which 

temperature risk exists in a temperature-risk-only scenario. 

3-3 Approximate Estimation  

3-3-1 Calibrated 𝜷 

In this section, we prepare a test to determine to what extent our static model can emulate the 

dynamic analogue model MIND. Consequently, we utilize MIND parameters to estimate the 

calibrated 𝛽 shown in Equation 11. 

To estimate 𝛽, we first calculate  𝛾𝑔 in the mitigation-only portfolio. In CRA, calibration is 

performed such that temperature remains below the temperature target with at least a 66% (=𝑝𝑔) 

probability of safety. Therefore, for probability 𝑝 and cumulative density function  𝐹(𝛾) of a log-

normal distribution, we have: 

𝐹(𝛾) = (12) 𝐸𝑟𝑓𝑐 [𝜇−𝐿𝑛 𝛾𝜎 √2 ]                                                    (21)  
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𝑝𝑔 =  𝐹(𝛾𝑔)                                                              (22) 

𝛾𝑔 =  𝐹−1(𝑝𝑔)                                                            (23) 

𝛾𝑔 =  𝐹−1(0.66)                                                           (24) 

𝛾𝑔 = 3.22 °C                                                              (25) 

The emissions for the 2°-temperature policy and the no-policy (BAU) are, respectively, obtained 

from the time-averaged cumulative emissions’ results in the MIND model with accumulation 

starting in 20105. In the temperature equation, 

 𝑇 = 𝛾 𝑎 𝐸𝐶𝑂2                                                                  (26) 

we can calculate 𝑎 = 0.00092  GtCO2
-1 given the information that we have for a 2°-temperature 

policy.  

Capital letters indicate static, and in some sense, time-averaged quantities of time-dependent 

variables. For economic variables that experience quasi-exponential growth, we suggest 

exponential discounting in the course of aggregation. Therefore, for production 𝑦(𝑡) = �̅�𝑒𝜆𝑡 and 

its relative change 
∆𝑦(𝑡)𝑦(𝑡) = − 𝜔𝑡 𝑒−𝑛𝑡, we define: 

∆𝑌 ≔  ∫ −𝜔𝑦(𝑡)𝑡 ⅇ−𝑛𝑡ⅇ−𝑠𝑡 𝑑𝑡∞0 ∫ ⅇ−𝑠𝑡 𝑑𝑡∞0 = − 𝜔�̅�𝑠(𝑠+𝑛−𝜆)2                                                (27) 

𝑌 ≔  ∫ �̅�ⅇ𝜆𝑡ⅇ−𝑠𝑡 𝑑𝑡∞0 ∫ ⅇ−𝑠𝑡 𝑑𝑡∞0 = �̅�𝑠𝑠−𝜆                                                           (28) 

                                                            
5 Numerical estimations of the model MIND used for calibrating the theoretical model are shown in table 1. 
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Parameters in the exponential production function are calculated through an exponential fitting 

regression of model output for a BAU analysis (see Figure 2a). In addition, n within the relative 

production change is the inverse time period to peak the maximum output loss in a mitigation-only 

analysis compared to a BAU analysis (Figure 2b).  

 

Figure 2. Exponential fitted output (a) and relative output change in mitigation-only portfolio with regard to BAU 

analysis (b). 

Using information that we have so far, we can calculate 𝐶𝑀(𝐸𝐶𝑂2) = |∆𝑌𝑌 | = 𝜔(𝑠−𝜆)(𝑠+𝑛−𝜆)2 and 𝑘 =
𝐶𝑀(𝐸𝐶𝑂2)(𝐸𝐶𝑂2−𝐸𝐵𝐴𝑈)2 . We now possess all of the information needed to estimate 𝛽 = 1.3%GDP/°C. 

3-3-2 Optimal Emission, Optimal SRM Forcing, and Minimum Climate Sensitivity 

Here, we can estimate optimal emissions, optimal SRM forcing, and minimum climate 

sensitivity derived, respectively, in Equations 18, 19, and 20. 

𝐸𝐶𝑂2 = 𝐸𝐵𝐴𝑈 −  𝑎𝑞2𝑘ℎ = 2035.12 GtCO2                                                                 (29) 

𝐹𝑆𝑅𝑀 = 1ℎ (𝑎 𝐸𝐶𝑂2 − 𝑇𝑔𝛾𝑔) = 6.04 W/m2                                                              (30) 
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𝛾𝑔 =  𝑒𝜇+𝜎2−√2  𝜎  𝐼𝑛𝑣ⅇ𝑟𝑠ⅇ𝐸𝑟𝑓[2 𝐶′𝑆𝑅𝑀(𝐹𝑆𝑅𝑀)𝛽 ℎ 𝑒𝜇+𝜎22  −1] = 8.5°C                             (31) 

Apparently, this minimum climate sensitivity is higher than the upper range climate sensitivity of 

our numeric (see Figure C1 in Appendix C for more information on numerical sensitivity analysis, 

which shows this minimum climate sensitivity in the temperature-risk-only scenario). 

  Climate Parameters Economic Parameters 

Eq.6   𝑇𝑔 2°C Eq. 27  𝑛 5 %/yr 

Eq. 11 𝐸𝐶𝑂2,𝑔 (mitigation −only)* 

675.93 GtCO2 Eq. 27, 

Eq. 28 

𝜆 2.1 %/yr 

Eq. 11 𝐸𝐵𝐴𝑈 2098.59 GtCO2 Eq. 27, 

Eq. 28 

𝑠 *** 5%/yr 

Eq. 19, 

Eq. 20 

(𝜇, 𝜎) (0.973,0.4748) Eq. 17  𝑞****  0.024  
%GDP/(W/m2) 

Eq. 22 𝑝𝑔 66% Eq. 27  𝜔 0.28 %/yr  

Eq. 12.1   ℎ ** 1/3.7 /(W/m2) Eq. 8 𝑘 6.4284 × 10−7 
%GDP/(GtCO2)2 

Eq. 26 𝑎 0.0009 GtCO2
-1    

Eq. 24 𝛾𝑔2℃,66% 3.22℃    

Table 1. Numerical values used for calibrating the theoretical model. 

* Cumulative emissions are averaged over the time period 2010-2200. 

** According to Kriegler and Bruckner (2004), h equals the reciprocal of the radiative forcing induced by a doubling 
of the concentration of CO2 with respect to its pre-industrial value. 

*** Social discount rate, 𝒔, is calculated utilizing the Ramsey equation 𝒔 = 𝝆 + 𝝀𝜼, where 𝝆, 𝝀, and 𝜼 are, 
respectively, pure rate of time preference (1 %/yr), production growth rate (2 %/yr), and constant relative risk aversion 
(2).  

**** SRM cost parameter, 𝑞, is calibrated from upper bound estimation of Klepper and Rickels (2012) as a percentage 
change in annual global GDP of $50 trillion (Moreno-Cruz and Keith 2013) from World Bank, World Development 
Indicator. 
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4 Numerical Results  

In a joint-mitigation-SRM analysis, mitigation would be almost crowded out by SRM in the 

temperature- and precipitation-risk-only scenarios, which can be explained by the low cost of SRM 

in order to reduce climate risk (see Figure 3). Society would experience almost no welfare-loss 

compared to the no-climate-policy option (business as usual, BAU) in these two scenarios. In the 

both-risks scenario, welfare-loss due to climate-policies costs and climate risks is more than these 

two scenarios, and amounts to approximately 0.38% (in terms of balanced growth equivalent, 

BGE) compared to BAU welfare, which is very low relative to 4.3% in the mitigation-only 

portfolio, as shown in Figure 4. In the mitigation-only portfolio, mitigation cost (consumption loss 

relative to BAU consumption) is approximately 1.7% (economic-related part in Figure 4).  

 

Figure 3. Investment in renewables. In temperature- and precipitation-risk-only scenarios, mitigation would be 

crowded out (a) while in both-risks scenarios (c), the starting point of investment on renewables would be 

approximately 30 years earlier than BAU analysis (a), but still 30 years later than mitigation-only analysis (b).  
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Figure 4. Welfare-loss (in terms of BGE) in the both-risks scenario from climate risks and economic costs for the 

mitigation-only and joint-mitigation-SRM portfolio.  This shows that by adding SRM to the mitigation portfolio, more 

than 90% of welfare loss due to temperature and precipitation risks and mitigation cost can be conserved. 

Figure 5 presents the temperature and precipitation trends for all of the numerically represented 

climate sensitivities (SOWs) in the BAU and mitigation-only analysis in the time horizon until 

2100. In the BAU analysis (Figures 5a and 5a*), temperature target and precipitation upper bound 

are violated for most of the SOWs.  
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Figure 5. Temperature and precipitation change with respect to the preindustrial level for 20 different states of the 

world from blue (low climate sensitivity) to red (high climate sensitivity). Left and right graphs represent scenarios 

for the BAU and mitigation-only portfolios, respectively. Dashed lines show the relevant target. In the BAU analysis, 

both temperature and precipitation targets would be transgressed for most of the SOWs, while they comply with their 

targets for approximately 66% of SOWs in the mitigation-only portfolio by construction. 

In the mitigation-only portfolio (Figures 5b and 5b*), temperature and precipitation trends 

exhibit a significant transgression reduction compared to BAU analysis, although they would 

exceed their targets in the 21st century for the 20% upper range of SOWs at the end of the century. 

These patterns in the mitigation-only option are the same for all investigated scenarios, which can 

be explained by the same calibration process in the extreme scenarios, a convex combination of 

risks, and compatible choice of temperature and precipitation risks when SRM is excluded. 

Therefore, if climate sensitivity is sufficiently large, mitigation cannot assure that temperature and 
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precipitation remain confined to their thresholds at all times. This is where SRM might be 

considered as a climate policy option to help avert the 2°C transgressions. 

 

Figure 6. Temperature and precipitation change from preindustrial climate in the joint-mitigation-SRM analysis for 

20 different states of the world from blue (low climate sensitivity) to red (high climate sensitivity). Left, middle, and 

right graphs represent trends for temperature-risk-only, precipitation-risk-only, and both-risks, respectively. Dashed 

lines show the relevant target. In the temperature-risk-only scenario, perfect compliance with the temperature target 

can be achieved, but the precipitation target is violated. The precipitation-risk-only and both-risks scenarios exhibit 

perfect compliance with the precipitation target, while the temperature target is transgressed. 

By adding SRM to the portfolio, we again consider the temperature-risk-only, precipitation-

risk-only, and both-risks scenarios (Figure 6). Figures 6a and 6a* represent temperature-risk-only 

scenarios, in which SRM is added to the portfolio but its side effects are not taken into account. In 

this scenario, we obtain perfect compliance with the 2°C-temperature target for all of the SOWs. 

This is a feature that is impossible to achieve without SRM. The “borderline” climate sensitivity 
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value for which a transgression would still occur is determined by equalizing the marginal welfare 

gain from avoiding climate risk through an extra unit of SRM, and per-unit SRM costs. The former, 

in turn, will depend on the properties of the probability density function of climate sensitivity. 

Apparently, the above borderline value of climate sensitivity is larger than our resolved upper end 

as of 7.17°C (see Figure C1 in the Appendix C). 

 

Figure 7. Division of temperature and precipitation changes into the CO2- and SRM-induced changes. Top figures 

divide temperature change in the temperature-risk-only scenario into the CO2- and SRM-induced changes. Lower 

figures display CO2- and SRM-induced precipitation changes in the both-risks scenario. As shown, SRM-induced 

changes are in a manner that compensates for all of the changes induced by CO2, and thus this compensation is more 

for higher climate sensitivities. 

However, precipitation violates its lower bound for all SOWs by the end of the century. 

Precipitation declines more dramatically for those with higher climate sensitivities than those with 

lower climate sensitivities. SRM reduces temperature risk by compensating the CO2-induced 
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temperature rise, which is greater for higher climate sensitivities. Therefore, SRM-induced 

temperature and precipitation reductions are larger when climate sensitivity is higher (see upper 

graphs in Figure 7).  

In contrast, in the precipitation-risk-only scenario in which only the precipitation risk is 

activated (Figures 6b and 6b*), the temperature guardrail is transgressed for approximately 30% 

of SOWs in the joint-mitigation-SRM analysis by the end of the century, while precipitation lies 

in its acceptable range for all SOWs.  In Figures 6c and 6c*, which display the results of the both-

risk scenario in which both precipitation and temperature risks are activated with equal weights, 

almost 90% and perfect compliance, respectively, with temperature target and precipitation 

corridor, can be achieved for the time horizon until 2100. CO2- and SRM-induced precipitation 

changes in this scenario are shown in the lower graphs of Figure 7. As both risks are taken into the 

optimization problem in this scenario, both risks are minimized compared to the extreme scenarios.  

5 Conclusions 

We emphasize the need for evaluating solar radiation management (SRM) jointly with 

mitigation. Here, we consider precipitation mismatch as a key risk category of SRM and formalize 

a target-based risk-cost-risk tradeoff between risks from global warming, policy costs, and risks 

from SRM side-effects. We choose cost-risk analysis (CRA) as our decision analytic framework, 

as it successfully deals with both deep uncertainty on global warming- and SRM-induced damages, 

as well as the infinitely-tailed probability density function of climate sensitivity. CRA combines 

the mathematical structure of cost-benefit analysis with the target concept used in cost-

effectiveness analysis. The trade-off parameters are calibrated within a universally applicable 

procedure, which makes a trade-off between expected welfare-loss due to mitigation costs and 
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avoided risks of climate targets transgression considering uncertainty in reaching the climate 

targets. We choose a probabilistic compliance level of 66%, in-line with an IPCC-calibrated 

language adjusted interpretation of “likely” achieving the 2°C target (UNFCCC 2011). We invent 

an extension of CRA such that it can deal with multiple climate targets, in our case precipitation 

target, in addition to the original temperature target. For the sake of transparency of the 

methodology, here we focus on the interplay of targets for globally aggregated climate variables.  

To identify the optimal choice between mitigation and SRM, we utilize an integrated 

assessment model and develop three scenarios: two as the extreme cases when either temperature 

risk or precipitation risk are considered, i.e., temperature-risk-only and precipitation-risk-only; and 

one scenario which considers both risks with equal weight, called both-risks scenario. Overall, our 

results demonstrate that welfare-loss for the mitigation-only option compared to BAU is 

approximately 4.3% (BGE) due to mitigation cost and climate risk, while it is approximately 1.7% 

(BGE) only due to mitigation cost.  

By adding SRM to the portfolio, in the temperature- and precipitation-risk-only scenarios, 

welfare rises approximately to its BAU level. In addition, SRM almost completely crowds out 

mitigation without significant welfare-loss in comparison with BAU, which can be explained by 

its low cost. In the temperature-risk-only scenario, perfect compliance and perfect incompliance, 

respectively, with temperature target and precipitation corridor can be achieved for all SOWs. In 

the precipitation-risk-only scenario, precipitation perfectly lies within its acceptable range for all 

SOWs, but temperature remains confined to its threshold for 70% of SOWs. Results of the both-

risks scenario show almost 90% and perfect compliance with temperature and precipitation targets, 

respectively.  Although SRM does not completely crowd out mitigation in this scenario, it can save 

90% of welfare-loss from economic costs and climate risks.  
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As a note of caution, we would like to highlight that we expect qualitatively different results 

when regional guardrails are added. In this sense, the fact that mitigation is crowded out in a joint-

mitigation-SRM portfolio (in temperature- and precipitation-risk-only scenarios) could constitute 

a unique feature of global guardrails, which might not be robust under regionalization. 

Furthermore, we would like to emphasize that our analysis comprises only one out of several 

potential risks accompanying SRM. Here, the contribution of this work is that we merely propose 

a viable idea of how to generalize a single probabilistic target to multiple targets for discussion, 

and highlight the unique feature of SRM of achieving almost 100% compliance levels.  
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Appendix A 

In this section, we present the results of our sensitivity analysis for a convex combination of 

climate risks in the decision-making shown in Equation 5 of the main manuscript. Figure A1 

displays the total risks for 100 different values of combination parameter, ɛ, ranging from 0 to 1. 

This clearly demonstrates that the total risks in a mitigation-only analysis will not change by using 

a convex combination of the different climate variables’ risks.  This assists our cost-risk analysis 

to add further precipitation risk in addition to temperature risk, and analyzing both risks 

simultaneously. 

 

Figure A1. Convex combination of temperature and precipitation risks. This figure shows the sensitivity analysis on 

combination parameter of Equation 5 in the mitigation-only portfolio, for 100 different 𝛜 ranging between 0 and 1. As 

shown, the convex combination of temperature and precipitation recover 66% compliance goal of calibration and 

prevent double counting. 
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Appendix B 

Here, we can find the solution for Equation 14-1 to be solved for optimal SRM forcing, 𝐹𝑆𝑅𝑀. 

The solutions are numbered as 14-2 to 14-9. 

𝐶′𝑆𝑅𝑀(𝐹𝑆𝑅𝑀)𝛽ℎ = ∫ 𝛾 𝑓(𝛾)𝑑𝛾∞ 𝑇𝑔𝑎 𝐸𝐶𝑂2−ℎ𝐹𝑆𝑅𝑀                                             (14-2) 

In order to solve this equation for FSRM, we need to expand the right-hand side integral so that we 

obtain:  

∫ 𝛾 𝑓(𝛾)𝑑𝛾∞ 𝑇𝑔𝑎 𝐸𝐶𝑂2−ℎ𝐹𝑆𝑅𝑀 = 12  𝔼(𝛾) (1 + 𝐸𝑟𝑓 [𝜇+𝜎2−𝐿𝑛 ( 𝑇𝑔𝑎 𝐸𝐶𝑂2−ℎ𝐹𝑆𝑅𝑀)𝜎 √2 ])                        (14-3) 

where 𝔼(𝛾) is the expected value of climate sensitivity in a log-normal distribution, 𝔼(𝛾) =
eμ+σ22  . 

𝐶′𝑆𝑅𝑀(𝐹𝑆𝑅𝑀)𝛽ℎ = 12  𝔼(𝛾) (1 + 𝐸𝑟𝑓 [𝜇+𝜎2−𝐿𝑛 ( 𝑇𝑔𝑎 𝐸𝐶𝑂2−ℎ𝐹𝑆𝑅𝑀)𝜎 √2 ])                           (14-4) 

2 𝐶′𝑆𝑅𝑀(𝐹𝑆𝑅𝑀)𝛽ℎ 𝔼(𝛾) − 1 =  𝐸𝑟𝑓 [𝜇+𝜎2−𝐿𝑛 ( 𝑇𝑔𝑎 𝐸𝐶𝑂2−ℎ𝐹𝑆𝑅𝑀)𝜎 √2 ]                                 (14-5) 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐸𝑟𝑓[2 𝐶′𝑆𝑅𝑀(𝐹𝑆𝑅𝑀)𝛽ℎ 𝔼(𝛾) − 1] = 𝜇+𝜎2−𝐿𝑛 ( 𝑇𝑔𝑎 𝐸𝐶𝑂2−ℎ𝐹𝑆𝑅𝑀)𝜎 √2                           (14-6) 

𝐿𝑛 ( 𝑇𝑔𝑎 𝐸𝐶𝑂2−ℎ𝐹𝑆𝑅𝑀) = 𝜇 + 𝜎2 − √2  𝜎  𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐸𝑟𝑓[2 𝐶′𝑆𝑅𝑀(𝐹𝑆𝑅𝑀)𝛽ℎ 𝔼(𝛾) − 1]                (14-7) 

𝑇𝑔𝑎 𝐸𝐶𝑂2−ℎ𝐹𝑆𝑅𝑀 =  𝑒𝜇+𝜎2−√2  𝜎  𝐼𝑛𝑣ⅇ𝑟𝑠ⅇ𝐸𝑟𝑓[2 𝐶′𝑆𝑅𝑀(𝐹𝑆𝑅𝑀)𝛽ℎ 𝔼(𝛾) −1] 
                            (14-8) 
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𝐹𝑆𝑅𝑀 = 1ℎ (𝑎 𝐸𝐶𝑂2 − 𝑇𝑔 𝑒√2  𝜎  𝐼𝑛𝑣ⅇ𝑟𝑠ⅇ𝐸𝑟𝑓[2 𝐶′𝑆𝑅𝑀(𝐹𝑆𝑅𝑀)𝛽ℎ 𝔼(𝛾) −1]−𝜇−𝜎2)                      (14-9) 

We can insert the optimal emissions 𝐸𝐶𝑂2, Equation 18, in Equation 14-9. From this, we derive the 

optimal SRM forcing shown in Equation 19. 

Appendix C 

To test the accuracy of our theoretical model, we simulate the temperature-risk-only scenario 

for a sample of climate sensitivities that range from 1.01°C to 20°C. The result of this sensitivity 

analysis is displayed in Figure C1. From this figure, it can clearly be seen that if climate sensitivity 

is higher than 8°C, temperature will transgress the 2°C-temperature guardrail.  

 

Figure C1. Maximum temperature for different climate sensitivities in the temperature-risk-only scenario.  This figure 

shows a numerical sensitivity analysis, for 30 different climate sensitivities within the range of 1.01°C to 20°C, to test 

the accuracy of our analytic solution. The filled circles display climate sensitivities for which temperature will 

transgress the temperature target by using SRM in the temperature-risk-only scenario. 
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