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Abstract 

 

This paper analyses, analytically and numerically, the consequences of risky house prices for housing 

investment within a risky steady state framework. I develop a stylised stochastic model to show that 

risky steady state house prices have a significant impact on housing investment choice. With increasing 

risk from aggregate income, the financial market and the housing market, the model predicts that agents 

tend to invest more in housing and financial assets. Moreover, the numerical analysis investigates the 

extents to which housing investment will go up when these uncertainties change at different scales. 

These predictions are shown to hold by using cross-country OECD data. 
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1. Introduction 

 

The global financial crisis in 2008–2009 led to increasing interest among academic researchers and 

policymakers alike in the dynamics of house prices. For many consumers, housing is the most important 

asset in their portfolio and a better understanding is required when making intertemporal investment 

decisions. I first provide a narrative description of the impact of the global financial crisis upon long-

run house price growth. In the forecasting literature, substantially less attention has been dedicated to 

long-horizon forecasts. One reason for this might be the methodological challenges confronted in 

forecasting by taking future uncertainty into account.
1
 Mueller and Watson (2013) generate a set of 

state-of-the-art econometric tools for evaluating long-run forecast uncertainty by focusing upon the 

low-frequency shape of the spectrum of a time series. Instead of predicting the exact point, they 

construct predictive sets that move towards probability distribution prediction. Unlike housing market 

models that relate house prices to a set of other variables in a structural modelling framework, they 

suggest a nonstructural approach. This univariate frequency-domain approach is a simple and effective 

way to make forecasts when long-run causal relationships are less clear.
2
 In light of the challenges of 

obtaining reliable long-horizon predictions, I employ this technique to understand the risky steady state 

of real house prices across OECD countries. The probability distributions associated with the 25- and 

50-year-horizon predictions are available in Figures 1 and 2, respectively. The probability distributions 

can be interpreted as a measure of how uncertain long-horizon house price forecasts are. Apparently, 

long-run risks imply a high degree of uncertainty around the predicted average growth rate of real house 

prices. The difference between the dashed red and solid blue lines is that the former refers to the sample 

period 1970Q1–2007Q4, while the latter uses the full sample up to 2013Q4.
3
 It is shown that adding the 

after-crisis data tends to reduce the standard deviations of the long-run growth rate for most countries.
4
 

At the same time, predicted long-run house price growth rates are uneven. In some countries, such as 

the US, the UK, Japan and France, expected growth decreases, while in Germany, Finland and 

Switzerland, increments are clearly presented. 

 

 

                                                           
1
 Predictions are usually classified according to the timescale involved in the prediction. Short-term (high 

frequency) and long-term (low frequency) are the usual categories but the actual meaning of each will vary 

according to the economic question analysed. In the application below, we choose a forecasting horizon of 25 

years and 50 years, respectively. 
2
 It goes without saying that the main shortcoming of univariate time series methods is that they are purely 

statistical, mechanical filters. On the other hand, they only require time series data on real house prices, which 

makes them very easy to implement for a wide range of countries. For a recent structural modelling approach 

forecasting the US housing market, see Kouwenberg and Zwinkels (2014). 
3
 The seasonally adjusted quarterly house price dataset employed in this paper stems from the Organization for 

Economic Cooperation and Development (OECD), which is a widely watched multi-country house price database. 
4
 Following Mueller and Watson (2013), the prediction sets are constructed by using the I(d) model with d=0. 

Precise estimates for d are not readily available. Therefore, we also investigate the robustness and sensitivity of 

the results obtained by using the flat Bayes prior d ∈ [-0.4; 1.4] suggested by Mueller and Watson (2013). The 

results match those in Figures 1 and 2. Supplementary graphs are available upon request. 



3 

 

Figure 1: 25-Year-Ahead Predictive Density of Real House Price Growth across Countries 

    

 

            

           Note: Solid blue lines are predicted based on the after-crisis HPI 1970Q1–2013Q4 and the dashed red lines are 

based on pre-crisis HPI 1970Q1–2007Q4. 
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Figure 2: 50-Year-Ahead Predictive Density of Real House Price Growth across Countries 

 

 

            

           Note: Solid blue lines are predicted based on the after-crisis HPI 1970Q1–2013Q4 and the dashed red lines are     

based on pre-crisis HPI 1970Q1–2007Q4. 
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So far, we have had an impression of the impact of the global financial crisis on long-run real house 

price growth. In the next section, I describe how to think about such risky long-run house prices from a 

conceptual standpoint and analyse the implications for the housing market. To do this, I employ the 

concept of a risky steady state proposed by Coeurdacier et al. (2011, 2012). It is well known that many 

nonlinear dynamic macroeconomics problems do not have analytical solutions and can only be 

approximated numerically. One of the most frequently used methodologies is the standard perturbation 

method. Perturbation methods used to solve dynamic stochastic general equilibrium (DSGE) models are 

similar in spirit to Taylor series approximations.
5
 Based on function derivatives, approximations are 

taken around a specific point or value of the parameter domain in order to approximate the function’s 

corresponding value when these values are perturbed away by small degrees from that point around 

which the approximation is taken. This solution method lends itself very well to the approximation of 

the exact solution of the nonlinear systems of DSGE models for two reasons. First and foremost, the 

assumption that shocks (perturbations) are not too large in a real world economic system is a reasonable 

one most of the time. Second, while the general discussion on perturbation methods does not prescribe a 

preferred point around which the approximation should be taken, dynamic economic systems exhibiting 

a steady state provide a reasonable value around which the approximation should be taken. In the most 

recent literature, this point has been given additional attention in that researchers typically consider two 

possible candidate steady state equilibrium points around which to form the approximation. One of 

them is the traditional deterministic steady state to which the economic system gravitates when future 

shocks are assumed to be zero, while the other steady state, suitably called the risky or stochastic steady 

state, is the one where the system comes to rest, when agents know that future shocks will continue to 

occur based on the certain known distributions of those shocks.
 6

 In this paper, I want to draw attention 

to the second-order approximation of the equilibrium conditions to solve the stochastic steady state in a 

portfolio problem. 

In fact, the risky steady state was first introduced by Juillard and Kamenik (2005). They argue that 

when perturbation methods are applied to stochastic general equilibrium models, because of 

nonlinearities, the centre of the ergodic distribution of the endogenous variables can be away from the 

deterministic steady state, making it not the best point around which to take the approximation. 

Coeurdacier et al. (2011, 2012) believe that risk-averse agents are aware of the existence of future 

shocks hitting the economy. Therefore, they anticipate the convergence of economic variables to some 

stochastic steady state, which incorporates information about expected future risk and the corresponding 

optimal decisions. Borrowing the example of a standard stochastic growth model presented by 

Coeurdacier et al. (2011, 2012), this concept is well illustrated in Figure 3. Anticipated uncertainty 

                                                           
5
 Standard perturbation relies on implicit function theorems, Taylor series expansions and techniques from 

bifurcation and singularity theory. Judd (1998) explains explicitly how to use these techniques to approximate the 

policy functions of dynamically stable stochastic control models near the steady state of their deterministic 

counterparts. 
6
 De Groot (2013) extends this to general settings as a matrix quadratic problem. 
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leads to precautionary capital accumulation, which raises the level of the stock of capital in the 

stochastic steady state than that in the deterministic steady state. Specifically, the stochastic steady state 

is defined as the point where agents decide to stay in the absence of shocks, but taking into account the 

likelihood of future shocks. By contrast, the deterministic steady state is the point where agents decide 

to stay in the absence of shocks and ignoring future shocks. Unfortunately, the risky steady state cannot 

be found analytically for most DSGE models. In addition, there are only a few numerical methods 

available in previous studies. Juillard (2011) proposes a numerical algorithm to find the risky steady 

state, which is truly mathematically challenging because of the nonlinearity.
7
 Alternatively, Coeurdacier 

et al. (2011, 2012) suggest another feasible strategy, which consists of postulating a linear decision rule 

for control variables around unknown risky steady states and their identifications along with the 

coefficients simultaneously. 

 

Figure 3: Deterministic vs. Stochastic Steady State: Decision Rules for Capital Accumulation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The main purpose of this paper is to provide a risky steady state framework to demonstrate how long-

horizon house price uncertainty effects housing investment choice. The model is designed to highlight 

the role of housing investment choice in the presence of stochastic labour income, a risky interest rate 

and risky house prices. Setting aside general equilibrium considerations, these risk sources will be 

treated as exogenous random processes, since in a risky steady state framework the mechanism of the 

calculation strategy can be more clearly demonstrated throughout this paper. According to my model, 

                                                           
7 

Based on this algorithm, Julliard (2011) finds that the approximation of the solution appears as quite different 

depending whether the approximation taken around the deterministic steady state or risky steady state. He uses the 

simple asset pricing model for which there exist a closed form solution to compare the accuracy of the 

approximation around the deterministic steady state with the one around the risky steady state. 

Stochastic 

steady state 

Deterministic 

steady state 

���� 

�� 
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the precautionary saving effect, the risk premium elicited by interest rate risk and house price risk and 

the crowding out effect are well reflected in the approximation equilibrium function. This implies that 

riskier countries will tend to have larger investment in housing and accumulate more financial assets 

than safer ones. In addition, I provide a numerical analysis of the theoretical model to show the impacts 

of a country’s risk level on an agent’s consumption and investment decision rules. Finally, I create 

proxy variables to denote the housing investment level and risk level of a country from three different 

perspectives, with which I provide evidence of positive relationships between them across 13 OECD 

countries. 

The remainder of this paper is divided into five sections. Section 2 describes the details of the extended 

model and derives our solution system, with which I compute the risky steady states and postulated 

coefficients of the decision rule endogenously. Section 3 discusses the results of the numerical 

experiments. The empirical evidence is presented in section 4. In the final section, I summarise my 

conclusions. 

 

2. Modelling Framework 

 

To illustrate the idea, I present an extended model along the lines of the work by Coeurdacier et al. 

(2011, 2012) and I use their notation for convenience. A representative household lives forever and has 

preferences over current and future consumption and housing. In each period	�, the individual needs to 

choose the amounts of non-housing consumption good �� 	and housing service	ℎ�. The price per unit of 

housing at time	� is denoted by 	�, while the price of �� is fixed and normalised to one. The 

representative individual’s intertemporal utility is 

  

                                                                 
��	∑ ����� ���� , ℎ���,                                                             (1) 

 

where 
��∙� is the expectation operator based on the information available in period �, and  is the time 

discount factor for the future utility stream ���� , ℎ��. The individual starts in period � ≥ 1 with net 

worth ��� given by 

 

                                                                  ��� = ��� + ����,                                                           (2) 

 

where ��� and ���� represent housing wealth and non-housing wealth, respectively.
8
 Given the 

housing price in period	� and housing investment from the previous period, the corresponding housing 

wealth in period	� is then given as			�ℎ��� assuming only one financial asset ���� is involved in the 

                                                           
8 

 Here, I ignore the maintenance cost of housing for simplicity.  
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non-housing investment from the last period at the risky interest rate	��.
9
 Therefore, the individual’s net 

worth at the beginning of period � can be rewritten as 

 

                                                            ��� = 	�ℎ��� + ������.                                                             (3) 

 

The resultant resources available for consumption and investment in period	�,	!�, are then defined as 

the sum of labour income plus net worth 

 

                                                            !� = "� + 	�ℎ��� + ������.	                                                       (4) 

 

Finally, in any period the individual faces the budget constraint 

 

                                         �� + 	�ℎ� + �� = "� + 	�ℎ��� + ������.                                                       (5) 

 

The meaning of the intertemporal budget constraint is straightforward. The right-hand side, again, 

represents the total resources of the household in period	�. Ignoring the portfolio adjustment costs, these 

resources can be used for consumption, housing wealth and non-housing wealth accumulation, which is 

given by the left-hand side of the equation.
10

 Putting general equilibrium considerations aside, I 

assume	"�, �� and 	� are exogenous variables and are lognormally distributed stochastic AR(1) 

processes 

 

                                         #$�"�� = %1 − '()#(̅ + '( #$�"���� + �(,�+�,                                               (6) 

                                         #$���� = �1 − ',�#,̅ + ', #$������ + �,,�+�,                                                  (7) 

                                         #$�	�� = %1 − '-)#-̅ + '- #$�	���� + �-,�+�,                                               (8)                  

                                       

where	#(̅, #,̅ and 	#-̅  are the means of #$�"��, #$���� and #$�	��,	.'(. < 1,	|',| < 1, and .'-. < 1 are 

the AR(1) coefficients and the mean-zero random terms are defined as �(,�~	��0, 34,(5 �, �,,�~	��0,
34,,5 � and �-,�~	��0, 34,-5 � for � ≥ 1. The correlations between all three variables are set to zero for 

simplicity. Given equations (1)–(5), the agent’s problem is to maximise his or her discounted expected 

utility subject to the intertemporal budget constraint, given his or her initial values of asset holdings. 

                                                           
9
 One obvious omission from my analysis is that non-housing assets are not taken into account. Endogenous 

labour supply, the non-separability of �� and	ℎ� and bequest considerations are also ignored here. 
10

 The difference 	��ℎ� − ℎ���� in the budget constraint implies that I allow households to move up or down the 

housing ladder. For an empirical study of housing mobility and downsizing in older age in the US and the UK, see 

Banks et al. (2012). 
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Rearranging equation (1) gives us the value function of the individual’s intertemporal consumption and 

investment problem 

        

                                                6��7�� = max;<=���� , ℎ�� + 
�6�+��7�+��>,		 
                                

 where                                     7� = ��, 	"� , �� , 	� , ����, ℎ���	�,     
                                                ?� = ���, ℎ��       for          	� ≥ 0.	                                                            (9) 

 

State vector		7� consists of the investor’s labour income, the return on risky assets, the price per unit of 

housing services, the amount of existing risky non-housing assets and the size of existing housing. The 

first-order conditions of the value function with respect to �� and ℎ� are given by the following three 

equations 

 

                                                 
@4/@B<
@4/@C<

= �
-<

,	                                                                                       (10) 

                                                 1 = 
��	D�/Dℎ�+1
D�/Dℎ�

	 	��+�	 	
	�

	�+1
�,	                                                           (11) 

                                                 1 = 
��	D�/D��+1
D�/D��

	 	��+��.	                                                                    (12) 

 

The interpretation of equations (10)–(12) is as follows. Optimal behaviour requires equating the 

marginal utilities of housing services in period 	� and the expected discounted marginal utilities of 

housing services in period � + 1 with the relative housing prices in � and � + 1. Notice that house price 

in � + 1 is also discounted by the risky interest rate	��+�. For ease of exposition and without loss of 

generality, the individual’s preferences over the non-housing consumption good and housing services 

are parameterised as 

 

                                                 ���� , ℎ�� = �B<EFG	C<G�EFH

��I ,                                                                      (13) 

 

where J measures the relative importance of housing services versus non-housing and K is the 

coefficient of relative risk aversion. By inserting equation (13) into (10)–(12), we have 

 

                                                  ℎ� = L�B<G

-<
�

E
EFG,                                                                                    (14) 

                                              1 = 
��		��+�	�B<ME
B<

��I���N��C<ME
C<

��IN+N�� 	 -<
-<ME

�,	                                  (15) 

                                              1 = 
��		��+�	�B<ME
B<

��I���N��N�C<ME
C<

��IN	�,	                                       (16) 

where 
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                                             L = O N
��NP

E
EFG.	                                                                                          (17) 

 

Essentially, equations (15) and (16) are equivalent if I insert (14) into both of them. Therefore, one 

could focus on one of these two equations, say, equation (16) for further analysis. I define 

 

                                              Q���+�, �� , ��+�, ℎ�+�, ℎ�� ≡ 	��+�	 OB<ME
B<

P
S

OC<ME
C<

P
T

− 1,   

where 

                                              U = −K�1 − J� − J,                                                     
                                              V = −JK.	                                                                                                (18) 

 

Then, equation (16) could be rewritten as 

 

                                              
�	�Q���+�, �� , ��+�, ℎ�+�, ℎ��� = 0.	                                                         (19) 

 

In order to take risk into account, equation (19) is replaced by its second-order Taylor expansion 	W 

around the expected future variables 

 

                                       0 = 
�	�Q���+�, �� , ��+�, ℎ�+�, ℎ���	 
                                        		≈ W�
�	���+��, 
�	���+��, 
�	�ℎ�+��, �� , ℎ��,	                                                 (20) 

where                                   

                                      W = 
����+�� OY<�B<ME�
B<

P
S

OY<	�C<ME�
C<

P
T

− 1                                                        

                                          + Z�S���S
5 6[�����+�� OY<�B<ME�

B<
P

S
OY<	�C<ME�

C<
P

T Y<�,<ME�
Y<�B<ME�\	 

                                          + Z�T+��T
5 6[���ℎ�+�� OY<�B<ME�

B<
P

S
OY<	�C<ME�

C<
P

T Y<�,<ME�
Y<�C<ME�\ 

                                          +UV]^_����+�, ℎ�+�� OY<�B<ME�
B<

P
S

OY<	�C<ME�
C<

P
T Y<�,<ME�

Y<�B<ME�Y<�C<ME� 

                                          +U]^_����+�, ��+�� OY<�B<ME�
B<

P
S

OY<	�C<ME�
C<

P
T �

Y<�B<ME�	            

                                          +V]^_��ℎ�+�, ��+�� OY<�B<ME�
B<

P
S

OY<	�C<ME�
C<

P
T �

Y<�C<ME�.                                (21) 

 

Multiplying equation (20) by the non-zero term		��
����+���� OY<�B<ME�
B<

P
�S

OY<	�C<ME�
C<

P
�T

 and 

simplifying further allows me to obtain 

 

                                               
�
Z OY<�B<ME�

B<
P

�S
OY<	�C<ME�

C<
P

�T
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                                          = 
����+���1 + �S���S
5

`a,<�B<ME�
Y<�B<ME�\ 	 + �T+��T

5
`a,<�C<ME�
Y<�C<ME�\ + UV bcd<�B<ME,C<ME�

Y<�B<ME�Y<�C<ME��      

                                          +U bcd<�,<ME,B<ME�
Y<�B<ME� + V bcd<�,<ME,C<ME�

Y<�C<ME� .                                                           (22) 

 

I assume that agents are aware of future shocks hitting the economy and anticipating the economic 

variables converging to some stochastic steady states, i.e. the ergodic distribution of these variables. 

Instead of the deterministic steady state	�7∗, ?∗�, from now on I consider the local behaviour of an 

economy around the risky steady state	�7f, ?f�.
11

 Therefore, at the risky steady state, this approximation 

becomes 

                                                                                                   

                                     
�
Z = �̅ g1 + �S���S

5
`a,<fffffff�B<ME�

B̅\ 	 + �T+��T
5

`a,<fffffff�C<ME�
Ch\ + UV bcd<fffffff�B<ME,C<ME�

BC̅h i 

                                        +U bcd<fffffff�,<ME,B<ME�
B̅ + V bcd<fffffff�,<ME,C<ME�

Ch ,                                                              (23) 

 

where 6[��ffffff�∙� and ]^_�ffffff�∙� denote the second-order moments evaluated at the risky steady state. In 

period	�, variance and covariance are evaluated at the risky steady state according to	6[��ffffff���+�� =
]^_�ffffff���+�, ��+�|�� = �̅� and		]^_�ffffff���+�, ��+�� = ]^_�ffffff���+�, ��+�|�� = �̅, �� = �̅�. The same occurs 

for		6[��ffffff�ℎ�+��,  ]^_�ffffff���+�, ℎ�+��	 and		]^_�ffffff�ℎ�+�, ��+��. The pattern can now be inferred. Compared 

with Coeurdacier et al.’s (2011, 2012) results, I find common features and differences. In the absence of 

risk, the return on financial investment must be equal to the inverse of time preference, which is given 

by		�̅ = �
Z. The second term  

�S���S
5 	6[��ffffff���+��/�̅5 in square brackets is the so-called precautionary 

saving term. Coeurdacier et al. (2011, 2012) point out that if uncertainty over future consumption 

increases, risk-averse agents will sacrifice consumption in the current period to ensure future 

consumption at the desired higher level. They also state that when financial assets are risky, an 

additional stabilising force on the consumption path is at work. This is reflected in the first term out of 

square brackets		U]^_�ffffff���+�, ��+��/�̅, i.e., the risk premium term elicited from the financial market. My 

extended model generates an extra three terms at the equilibrium:
�T+��T

5 6[��ffffff�ℎ�+��/ℎf5, 

UV]^_�ffffff���+�, ℎ�+��/�̅ℎf	 and		V]^_�ffffff���+�, ℎ�+��/ℎf. The first one is similar to the precautionary effect. 

It implies that when future uncertainty in the housing market grows, clients anticipate the convergence 

of housing investment to a higher level in the long run. My second term comes from the risk premium 

associated with risky house prices. This stresses the fact that in the housing market, house price risk 

serves as the third stabilising force other than precautionary savings and the risky interest rate, since the 

covariance between consumption and housing reduces the persistence of shocks in the housing market. 

When the economy reaches the risky steady state, countries with higher house price risk tend to invest 

                                                           
11

 For the rest of the paper, j∗ and j̅ denote the deterministic and risky steady states for any variable	j, 

respectively. 
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more in housing than safer ones. The last term in my equilibrium is similar to the crowding out effect 

highlighted by Cocco (2005). Unlike other risky assets, house price risk can hardly be avoided for most 

households, since everyone wants to purchase a home eventually. However, with limited resources, 

participation in the financial market is crowded out by risky house prices. Investment in housing assets 

increases alone with the covariance between housing investment and financial asset return at the risky 

steady state, as shown in equation (23). Note that the extended model renders an explicit analytical 

solution impossible. Therefore, I employ numerical techniques in the next section. Before turning to the 

numerical analysis, I need to rewrite the second-order expansion by defining 

 

                                                 k���+�, �� , ��+�, 	�+�, 	�� ≡ 	��+�	 OB<ME
B<

P
l

O -<
-<ME

P
m

− 1,				                                   
where 

                                                n = − g I
��N �J5 + �1 − J�5� + Ji,                                                     

                                                o = − NI
��N.	                                                                                             (24) 

 

Collecting the terms, another form of the approximation of our equilibrium around the risky steady state 

could be given as follows
12
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Y<�-<ME�P
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                                                = 
����+���1 + �l���l
5

`a,<�B<ME�
Y<�B<ME�\ 	 + �m+��m

5
`a,<�-<ME�
Y<�-<ME�\               

                                                −no bcd<�B<ME,-<ME�
Y<�B<ME�Y<�-<ME�� + n bcd<�B<ME,,<ME�

Y<�B<ME� .                                                  (25) 

 

In fact, this is equivalent to equation (22), which provides information between future consumption and 

housing investment. However, equation (25) contains only one non-predetermined variable, 

consumption	��, which makes our numerical exercise easier, since both interest rate 	�� and housing 

price		� are assumed to be exogenous stochastic processes. Following Coeurdacier et al.’s (2011, 2012) 

strategy, we also postulate a linear decision rule for	� 

 

                        �� = �h + pqq����� − �h� + pq,��� − �̅� + pq(�"� − "f� + pq-�	� − 	̅�,                (26) 

 

where �h is the unknown risky steady state value for financial assets and pqq, pq,, pq( and pq- are the 

four coefficients needed to be calculated endogenously. By inserting equations (14) and (26) into 

budget constraint (5) and then linearising it, one obtains the approximations of conditional expectation 

and variance of consumption 

                                                           
12

 The calculation details are given in Appendixes A and B. 
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����+�� = r��h�pqq − 1� + r�pq,�̅ + r�pq("f + r�pq-	̅ + r��1 − pq(�
��"�+�� 

                            +r���� − pq,�
����+�� − r�pqq�� + sr��ℎ� − pq-) + r5�
��	�+�� + rt,       (27) 

 

           6[�����+�� = r�
5�1 − pq(�56[���"�+�� + r�

5��� − pq,�56[�����+�� 

                             +sr��ℎ� − pq-) + r5�56[���	�+��,                                                       
where 

                                 u = N
��N,  r� = �

�+v,  r5 = v
�+v,  rt = ��wxy

�+v .                                                       (28)                            

                                                  

At the same time, I also know the conditional covariance of consumption and the interest rate and 

housing price 

 

                            ]^_����+�, ��+�� = r���� − pq,�6[�����+��,                                                          (29) 

                            ]^_����+�, 	�+�� = �r��ℎ� − pq-� + r5�6[���	�+��.                                             (30) 

 

I assume	"�, �� and 	� to be three exogenous variables and autocorrelated lognormally distributed 

stochastic processes. Therefore, their risky steady states are calculated as follows
13

 

 

                                                    "f = zw{̅+E
\		 |},{\

EF~{\ ,                                                                                 (31) 

                                                    �̅ = zw�̅+E
\		 |},�\

EF~�\ ,                                                                                  (32) 

                                                   	̅ = zw�̅+E
\		 |},�\

EF~�\ ,                                                                                   (33) 

 

and their corresponding conditional expectations are 

 

                                      
��"�+�� = z%���{)w{̅+�{wx(<+		|},{\
\ ,                                                                 (34) 

                                      
����+�� = z������w�̅+��wx,<+		|},�\
\ ,                                                                    (35) 

                                     
��	�+�� = z%����)w�̅+��wx-<+		|},�\
\ .                                                                  (36) 

 

Compared with conditional expectations, it is apparent that in the case of the risky steady state, the 

response to positive and negative shocks is stronger. In addition, their conditional variances are given as 
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 The risky steady states of	"� , 	�  and �� are the unconditional expectations of the associated ergodic distribution. 

Following the assumption, they are lognormal-distributed processes, i.e.,"�~#$��#(̅ , �},{\

���{\�, ��~#$��#,̅ , �},�\

����\� and 

	�~#$��#-̅, �},�\

����\�. Therefore,	
�"�� = zw{̅+E
\		 |},{\

EF~{\
, 
���� = zw�̅+E

\		 |},�\
EF~�\ and 
�	�� = zw�̅+E

\		 |},�\
EF~�\

. 
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                                    6[���"�+�� = z5%���{)w{̅+5�{wx(<+	�},{\ �z 	�},{\ − 1�,                                          (37) 

                                    6[�����+�� = z5������w�̅+5��wx,<+	�},�\ �z	�},�\ − 1�,                                             (38) 

                                    6[���	�+�� = z5%����)w�̅+5��wx-<+	�},�\ %z 	�},�\ − 1).                                          (39) 

 

Finally, I have the following local conditions to identify the risky steady states and coefficients assumed 

in equation (26) 

 

                                                               ����̅� = 0,                                                                               (40) 

                                                               
@��
@�<

|�<��̅ = 0,                                                                           (41) 

where 

                                                        �� = �7� , ?��,   �̅ = �7f, ?f�. 
 

In my model, the system can be written as a five-dimension equation system.
14

 The solutions of this 

system are the values of 	�h,	pqq,	pq(,	pq,	[$�	pq-, with which we are able to calculate � ̅ and ℎf as 

follows 

 

                                                           �̅ = "f + �h��̅ − 1�,                                                                      (42) 

                                                           ℎf = L�B̅G
-̅ �

E
EFG  with  L = O N

��NP
E

EFG.                                          (43) 

 

3. Numerical Analysis 

 

In this section, I provide a numerical analysis of the theoretical model using MATLAB. By changing 

the standard deviations of labour income, the risky interest rate and house prices, the discussion focuses 

on the variations of consumption and investment at the risky steady states. Specifically, I design three 

experiments to analyse the decision rules given the different levels of aggregate income risk, financial 

market risk and housing market risk. The purpose of first experiment is to replicate part of Coeurdacier 

et al.’s (2011, 2012) earlier work and extend the numerical analysis to test whether their conclusions are 

still robust in the presence of a risky housing market. Moreover, by changing the standard deviation of 

the risky interest rate and house prices, the last two experiments aim to demonstrate the risky housing-

related effects, as presented in equation (23). 

To do this, I begin by discussing a baseline setup of the parameters in my model. Instead of estimating 

key parameters from the original data myself, I rely upon the US data-based estimations already widely 

used by most researchers. The time discount parameter is standard; I set it at =0.96, which follows 

Cocco et al. (2005). The curvature parameter K is equal to 3, below the upper bound of 10 considered to 
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 See Appendix C for the calculation details. 
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be plausible by Mehra and Prescott (1985). Parameter J measures the relative importance of housing 

services versus non-housing, and it is fixed at J=0.2, which is approximatively equal to the average 

proportion of household housing expenditure in the Consumer Expenditure Survey 2001 suggested by 

Yao and Zhao (2005) (see also U.S. Department of Labor (2003)). Similar to Cocco (2005), I set the 

standard deviation of labour income	3( at 0.02 in the second and third experiments. As such, the test 

scale of 3( in my first experiment will include this value as well and this is fixed between 0 and 0.1. In 

order to make my results comparable with those of Coeurdacier et al. (2011, 2012), I follow their 

suggestion and fix the mean of labour income "f at 0.8 and AR(1) coefficient '( at 0.9. Recall that in the 

absence of risk, the usual Euler equation implies	�̅ = �
Z, but under the consideration of the risky steady 

state, the value of 	�̅ is no longer equal to the inverse of the time discount parameter and it varies away 

from		�
Z. Thus, I set �̅ at 1.027 similar to Coeurdacier et al. (2011, 2012). In my specification of the 

house price process, I follow Nagaraja et al. (2011), who provide a sophisticated autoregressive 

approach to predict the parameter of risky house prices. Their estimations for the standard deviation of 

house prices and the AR(1) coefficient are 0.07
15

 and 0.9, respectively. The values of the baseline 

parameters and test ranges in each experiment are given in Table 1. 

 

Table 1: Baseline Parameters in the Model  

 

        Parameter Value 

Time discount parameter  0.96 

Curvature parameter K 3.0 

Preference for housing J 0.2 

Risky steady state "f 0.8 

Risky steady state �̅ 1.027 

Risky steady state 	̅ 0.8 

AR (1) coefficient '( 0.9 

AR (1) coefficient ', 0.9 

AR (1) coefficient '- 0.9 

 

Experiment 1: 

Aggregate Income 

Experiment 2: 

 Financial Market 

Experiment 3: 

Housing Market 

Sd.of labour income 3( (0,0.1)    0.02 0.02 

Sd.of risky interest rate 3, 0.02   (0.01,0.1) 0.02 

Sd.of house price 3- 0.07   0.07 (0,0.1) 

                                                           
15

 This value is also close to Cocco’s (2005) prediction, which is 0.062. 
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In Figure 4, the results of experiments 1–3 are presented in the three panels. By allowing the standard 

deviation of stochastic income 3( to change between 0 and 0.1, the first panel shows the impact of 

labour income risk on consumption and investment decisions at the risky steady state. The overall 

qualitative feature of the variations is consistent with Coeurdacier et al.’s (2011, 2012) results: 

consumption, financial assets and housing investment all increase monotonously alone with the risk 

level of labour income at the risky steady state. A rise in consumption is not a surprising outcome, since 

the precautionary effect is at work. People living in riskier countries usually anticipate bigger shocks 

hitting the economy. Typically, risk-averse agents will save more resources in exchange for a stable life 

in the long run. Therefore, higher future uncertainty caused either by income risk or by financial 

market/housing market risk induces higher consumption at the risky steady state. These patterns can be 

observed in the first graph of each panel. 

Meanwhile, some quantitative differences are also worth noticing. In my experiments, the variations of 

aggregate income risk, financial risk and housing risk have a relatively small impact on the risky steady 

states of consumption. For instance, in the first experiment, it goes up from 3.5166 to 3.5506, only a 

0.97% increase, when aggregate risk changes from 0.01 to 0.05.
 
These small dispersions lie on the risk 

premium effects induced by the risky interest rate and house prices. Coeurdacier et al. (2011, 2012) 

extend their numerical analysis by differentiating the precautionary effect and risk premium effect 

separately. Under the assumption that financial returns are risk-free, small changes to labour income 

risk have a strong impact on the risky steady state for net foreign assets; however, this feature will 

disappear if the assets are risky,
16

 since a risky financial return reduces the persistence of shocks on 

risky assets compared with non-stochastic scenarios and acts as an additional stabilising force on the 

consumption path. In my model, I also include the housing market under the assumption that house 

prices change randomly. In this scenario, the risk premium effect associated with risky house prices is 

working. Similar to risky financial returns, uncertainty in house prices lowers the persistence of shocks 

on housing assets and also has a stabilising effect on consumption. This smoothing caused by the 

housing market has already been pointed out by Hurst and Stafford (2004). They use an empirical study 

to document the extent to which homeowners use housing equity to smooth their consumption over 

time. 

As for financial assets level, I find it positively associated with the country’s risk levels evaluated in 

three aspects. This is also highlighted roughly by Coeurdacier et al. (2011, 2012). Influenced by the 

level of aggregate income risk in the economy, the precautionary motivation induces a well-defined 

risky steady state for financial assets. Therefore, a riskier country tends to accumulate more wealth than 

safer one in the long-term. However, the extents of accumulated wealth are different from case to case. 

If the aggregate income risk level changes from 0 to 0.1, this causes a 4.97% increase in financial assets 

                                                           
16

 In Coeurdacier et al.’s (2011, 2012) numerical example, the risky steady state for consumption	� ̅jumps from 0.4 

to 2.0 when	σ� varies from 0.01 to 0.05, a 400% increase under the assumption of a risk-free financial return. 

However, when financial return is risky, � ̅changes only from 0.995 to 1.017, a 2.2% increase. 
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(second graph, panel 1). With the same amount of risk changing in the housing market, my model 

predicts lower growth from 2.6766 to 2.6799, a 0.12% increase (second graph, panel 3). This difference 

can be explained by the so-called crowding out effect induced by risky housing. House price risk can be 

substantial, but unlike other risky assets that people can avoid, most households keep investing in 

housing in order to own their home eventually (Banks et al. (2010)). 

 

Figure 4: Results of the Numerical Analysis 

 

Experiment 1: Aggregate Income  

 

 

Experiment 2: Financial Market  

 

Experiment 3: Housing Market  
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Participation in the financial market is squeezed out by risky housing.
17

 Although long-horizon 

uncertainty triggers more financial wealth accumulation, the increment will be smaller if this 

uncertainty comes from the housing market. Following a similar logic, I am also able to explain the 

changing of housing investment when the standard deviation of the risky interest rate increases, as 

shown in the third graph, panel 2. As the financial market becomes more volatile, households will 

adjust their investment strategy by investing less in risky assets and more in housing. High uncertainty 

in the financial market then serves as a motivation to invest in the housing market. Moreover, another 

investment incentive can be identified in my experiments as well. With increasing house price risk, the 

model predicts that housing investment also grows. This impact is at work through the channel of the 

hedging effect associated with future house price risk (Han (2010)). If households expect higher 

uncertainty in the housing market, they may have an incentive to invest more in housing assets, since 

these serve as an insurance against price fluctuations for future movements up the housing ladder 

(Banks et al. (2010)). By comparing the second experiment with the third one, the general impression is 

that uncertainty rooted in the housing market has a stronger impact on household consumption and 

investment decisions than that rooted in the financial market. 

 

4. Empirical Analysis 

 

In the previous section, I used three numerical experiments to discuss the effects of certain parameters 

qualitatively and quantitatively. Next, I present some tentative empirical evidence for each idea. The 

model implies that, at equilibrium with the expectation of future risk, a country with a higher risk level 

tends to invest more in housing assets than a safer one. In this sense, I want to visualise this relationship 

between risk level and housing investment level by creating a scatter plot of two proxy variables from 

three different perspectives across OECD countries. More specifically, I use the 25-year-ahead 

predicted standard deviations of the real GDP growth rate to represent a country’s aggregate risk level. 

These predictions are constructed by the I(0) model following the earlier work of Mueller and Watson 

(2013) using the real GDP growth rate 1970Q1–2010Q4 for 13 OECD countries.
18

 Their method aims 

to quantify the uncertainty in the long-run forecasting of economic variables. Therefore, past history-

based standard deviations could be considered to be proxies of countries’ aggregate risk levels. In the 

same spirit, the paper constructs a country’s risk level in the financial market and housing market by 

predicting the 25-year-ahead standard deviations of the real interest rate and real house price index 

growth rates, respectively. To keep the forecast results as consistent as possible, my samples of the real 

interest rate and real house price index are taken between 1970Q1 and 2010Q4 as well. Given the 

potential reverse causality, the proxy variable for housing investment level needs to be measured 

                                                           
17

 This is similar to Cocco’s (2005) crowding out effect. He provides empirical evidence to show that house price 

risk can crowd out stockholdings, and this effect is significant for investors that have limited financial wealth. 
18 

Owing to the availability of data in OECD’s iLibrary, I use the data sample between 1970Q1–2011Q4 for 13 

OECD countries.  
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carefully. To do this, I use OECD data to compute the housing asset-to-GDP ratio in 2011 to capture the 

level of housing investment in that year.
 
According to the modelling setup, this paper takes the risk 

resources as given and the standard reversal causality issue is less of a concern in my discussion. The 

measures of risk used in my scatter plots are forecasted from historical data between 1970Q1 and 

2010Q4, which are most unlikely to be affected by the housing asset level evaluated in 2011. 

Finally, the relationships between housing investment and the three different risk measures are 

demonstrated in Figure 5, panels 1–3. The general impression is that there are positive associations 

across OECD countries.
19

 Agents living in riskier countries are aware of the existence of future 

uncertainty and therefore anticipate bigger shocks hitting the economy. For instance, in 2010, based on 

historical information between 1970 and 2010, agents from Spain presuppose their housing market risk 

as high as 28. In such a case, they tend to invest more in housing compared with a safer county such as 

Sweden (22.4) or Switzerland (18.6). In Spain, the housing asset-to-GDP ratio was almost 6% in 2011.  

 

Figure 5: Relationship between Housing Investment Level and Risk Level Evaluated from Three 

Aspects across OECD Countries 

 

Panel 1: Aggregate Income  
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 I could also use 50-year-ahead predicted standard deviation and this will not change the distribution of the 

points in the scatter plot too much. The relationship will remain positive. 
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Panel 2: Financial Market  

 

 

 

Panel 3: Housing Market 
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Meanwhile, housing investment in the same year accounted for 3.6% and 4.8% of GDP in Sweden and 

Switzerland, respectively (panel 3 in Figure 5). A similar positive relationship can also be observed in 

the financial market in panel 2 of Figure 5, which provides empirical evidence of the crowding out 

effect triggered by risky house prices. Unlike other risky assets, purchasing a home is the single most 

important financial decision that cannot be bypassed for typical households (Han (2010)). Therefore, 

they prefer housing assets to financial assets, since most people want to own their home eventually and 

thereby create insurance demand for housing ownership (Banks et al. (2010)). 

 

5. Conclusion 

 

This paper analyses the impact of long-horizon house price uncertainty on housing investment choices 

in the risky steady state framework. Typically, risk-averse agents will spend less on risky assets as 

volatility increases. However, in this paper I show that housing investment in the presence of risky 

steady state house prices is an exception to this rule. Taking future risk into account, the precautionary 

saving effect, crowding out effect and risk premium elicited by interest rate risk and house price risk are 

well reflected in my approximated risky steady state equilibrium function. Therefore, the model stresses 

analytically and conceptually why long-horizon house price uncertainty acts as an incentive to invest 

more in housing assets in a riskier country. Moreover, the numerical results also show the extents to 

which housing investment will go up when uncertainty changes at different scales, measured by 

different aspects: aggregate income risk, the risky interest rate and risky house prices. This also stresses 

that in a volatile economy housing serves not only as a durable consumption good but also as a self-

insurance instrument, through which a household has leverage against future house price fluctuations. 

Finally, the empirical evidence across OECD countries sheds light on the role of the risky housing 

market in an agent’s intertemporal consumption and investment decisions and broadly confirms my 

discussions of the theoretical results within the risky steady state framework. 

What is missing in the modelling setup above and what warrants further investigation? My model above 

makes the extreme assumption that house prices are an exogenous AR(1) process. However, the true 

stochastic process is likely to be much more complex than the one I have assumed, involving higher-

order autoregressive or moving average terms (Cocco (2005)). Another important limitation is the 

assumption of the correlation between aggregate income and house prices. I focus mainly on the 

covariance of consumption with housing investment, house prices and the interest rate. The fact that I 

ignored this correlation may have an important impact on the covariance terms in my model. Further 

ignored features are financial frictions and the resulting borrowing constraints. At a more fundamental 

level, general equilibrium effects are missing in the simple representative agent model. Conventional 

wisdom is that house price fluctuations are driven by technology, tastes and various macroeconomic 

shocks in general equilibrium models. I leave such richer modelling frameworks for future research. 
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Appendix A: Derivation of Equation (25) 

 

From equations (14), (15) or (16) in the text, the Euler equation is given by 

 

                                            1 = 
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�m
�,	                                                                 

with 

                                           n = − g I
��N �J5 + �1 − J�5� + Ji,                                                     

                                           o = − NI
��N.	                                                                                                 (A1) 

 

Next, we define 
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The Euler equation (A1) can be rewritten as  

                                                

                                            
�	�k���+�, �� , ��+�, 	�+�, 	��� = 0.	                                                   (A3) 

 

Following Coeurdacier et al.’s (2011) risky steady state strategy, we replace equation (A3) with its 

second-order Taylor expansion � around the expected future variable 
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term gives us 
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By moving the second term to the left and multiplying both sides by	 �
Y<�,<ME�, equation (A6) will be 

transferred into 
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At the risky steady state, this approximation becomes 

                                                                                                   

               
�
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5
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Appendix B: Second-Order Approximation of the Euler Equation 

 

The Euler equation’s second-order expansion around the expected future variable is given by 
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Appendix C: Derivation of the Solution System and the Risky Steady State 

 

The optimality conditions are given by a five-dimensional equation system. The first equation is 

equation (A8) in Appendix A 

 

             1 − �
Z,̅ + �l���l

5
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The remaining equations are given as follows 
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In order to obtain the exact expression of this equation system, we need to deduce the partial derivatives 

of �� given by equation (A6) with respect to ��, ��, 	�, 
����+��, 
����+��, 
��	�+��, 6[���"�+��, 

6[�����+��	[$�	6[���	�+�� 
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Next, we differentiate the conditional expectation of consumption (27) in terms of the expected values 

of	"�+�,	��+�,		�+� 

 

                                                  
@Y<�B<ME�
@Y<�(<ME� = r��1 − pq(�,                                                                   (C15) 

                                               
@Y<�B<ME�
@Y<�,<ME� = r���� − pq,�,	                                                                   (C16) 



26 
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and  
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Then, we also need the differentiations of expectation and variances in income, the interest rate and 

housing prices with respect to "�, �� and 	� 
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After substituting equation (26) into the budget constraint, we obtain the derivatives of �� to	"�, ��, 	� 

and  ���� 
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Finally, we differentiate �� again with respect to "�, ��, 	� and  ���� 
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By inserting equations (C6– (C32) into equations (C1)–(C5) and evaluating at the risky steady state, we 

can get an equation system containing five unknown variables: 	�h,	pqq,	pq(,	pq,,	pq-, with which we 

are able to calculate � ̅and ℎf as follows 

 

                                                      �̅ = "f + �h��̅ − 1�                                                                         (C33) 

                                                      ℎf = L�B̅G
-̅ �

E
EFG                                                                                (C34) 

 

 

Appendix D: Optimal Housing Investment  

 

An agent’s maximisation problem gives us the optimal housing investment  
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Taking #$ on both sides of equation (D1) leads to 

 

                                          #$ℎ� = #$L + N
��N #$�� + �

N�� #$	� ,                                                            (D2) 

 

which is approximately a lognormally distributed process under our assumptions. Then, expectation and 

variance of #$ℎ� can be computed immediately as follows 
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Variance in ℎ� is then 

 

                                   6[��ℎ�� = z5Y�wxC<�+`a,�wxC<�%z`a,�wxC<� − 1).                                                 (D5) 

 

This implies that an increase in house price risk will increase housing investment volatility in my 

model. 
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