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1 Introduction

There is a consensus among economists that uncertainty affects the consumption-saving
decision of individuals. Neglecting the effects of risk in macroeconomics and finance often
generates substantial pricing errors. Hence, recent research is concerned with the ability
of local approximations of non-linear stochastic macroeconomic models to account for
risk, with a particular focus on perturbation methods originally introduced in economics
by Judd and Guu (1993). Although perturbation-based methods only provide local pre-
cision around a particular point, usually the model’s deterministic steady state, many
authors suggest that they can generate high levels of accuracy, comparable to that deliv-
ered by global approximation techniques, as the order of the approximation is increased
(see Judd, 1998; Aruoba et al., 2006; Caldara et al., 2012; Parra-Alvarez, 2018). In many
applications, however, we are interested in the first-order perturbation and the resulting
linear approximation of the equilibrium conditions. A linear structure not only provides
analytical insights and helps to understand key features of the model, but also facilitates
its estimation, e.g., by means of the Kalman filter (see Harvey and Stock, 1985; Singer,
1998; Harvey, 2006; Fernandez-Villaverde and Rubio-Ramirez, 2007), and ensures non-
explosive forecasts and simulations without the need to impose explicit conditions on the
support of the shocks driving the economy.

A known limitation of the first-order perturbation around the deterministic steady
state is that the approximate solution of discrete time models typically exhibits certainty
equivalence (see Simon, 1956; Theil, 1957). In other words, the first-order approximation
to the solution of stochastic economic models with forward-looking agents is identical to
the solution of the same model under perfect foresight. The direct implication is that the
solution becomes invariant to higher-order moments of the underlying shocks. Therefore,
this paper addresses the following questions. What are the costs of neglecting the effects
of risk in linear approximations? Put differently, what would be the benefits of using a
linear approximation that is not certainty equivalent? In particular, by how much could
such an approximation reduce the errors that one makes when not accounting for risk?
How can these errors be interpreted in an economically meaningful way?

Certainty equivalence prevails in the classical linear-quadratic optimal control prob-
lem, popularized in economics by Kydland and Prescott (1982) and Anderson et al.
(1996). In the early 1950s the introduction of certainty equivalent stochastic control
problems with quadratic utility and linear constraints aimed at providing a practical so-
lution for decision problems under uncertainty. Even today, if risk is negligible for the
research question at hand, certainty equivalent solutions are still useful. In this case,
one may conclude that “certainty equivalence is a virtue” (see Kimball, 1990a). Con-
versely, when there is a reason to believe that the effects of risk are important, one

notices that “certainty equivalence is a vice”. Put differently, if risk matters, breaking



certainty equivalence is desired in order to account for the effects of risk. As discussed
in Ferndandez-Villaverde et al. (2016), the approximated solution of the model under cer-
tainty equivalence (i) makes it difficult to talk about the welfare effects of uncertainty; (ii)
cannot generate any risk premia for assets; and (iii) prevents analyzing the consequences
of changes in volatility.

To break the property of certainty equivalence in the class of perturbation meth-
ods, economists have restored to the computation of higher-order Taylor expansions, the
underlying apparatus behind any perturbation method, which translate into non-linear
approximations of the model’s solution. Originally proposed in Judd and Guu (1993),
higher-order approximations became popular with the work of Schmitt-Grohe and Uribe
(2004) for second-order approximations, and that of Andreasen (2012) and Ruge-Murcia
(2012) for third-order approximations. More recently, Levintal (2017) extended the per-
turbation package to include fifth-order approximations. However, the use of high-order
approximations for medium-scale macroeconomic models (i) could be computationally
expensive, (ii) often results in explosive solutions, and (iii) requires computationally de-
manding non-linear estimation methods, such as the particle filter, for the estimation of
the model’s structural parameters.

In contrast to stochastic discrete-time models, certainty equivalence breaks in the first-
order approximation when time is assumed to be continuous (see Judd, 1996; Gaspar and
Judd, 1997). This property, which allows us to account for risk in a linear world, is the
product of two complementary results. First, while in discrete time the approximation is
built inside the system of expectational equations that collects the equilibrium conditions
of the economy, in continuous time we may use It6’s lemma to eliminate the expectation
operator prior to the construction of the approximation. The resulting non-expectational
system of equations, although deterministic, will capture the effects of uncertainty by
including information on the sensibility to risk of the yet unknown solution (see Chang,
2009). Second, as shown in Fleming (1971), who provides the mathematical foundations
of perturbation methods for continuous-time stochastic optimal control problems, reg-
ular perturbation theory produces asymptotically valid approximations of the unknown
solution when the variance of the shocks is used as perturbation parameter. As dis-
cussed in Jin and Judd (2002), this choice of the perturbation parameter is not arbitrary
but instead follows basic economic intuition, whereby “the economic response should be
proportional to the variance”. This is in contrast to discrete-time models where the ap-
propriate perturbation parameter is shown to be the standard deviation (cf. Judd, 1998,
Jin and Judd, 2002, Ferndndez-Villaverde et al., 2016). Combining these two results, the
linear approximation to the model’s solution, which results from a first-order perturba-
tion around the deterministic steady state, will exhibit a constant correction term that
depends on the variance of the shocks that drive the dynamics of the economy.

In this paper we revisit the ability of a first-order perturbation to capture the effects of



risk. Using as a benchmark an RBC model with habit formation and capital adjustment
costs a la Jermann (1998), we compare how the effects of uncertainty are internalized by
perturbations built around the model’s deterministic steady state relative to a more ac-
curate solution obtained by projection methods. First, we build approximated solutions
to the continuous-time model and show that the certainty equivalence property already
breaks in the first order such that the associated linear approximation is risk-sensitive.
More specifically, the first-order perturbation will correct for risk through an additional
constant term that incorporates information on the slope and curvature of the optimal
policy functions at the deterministic steady state. We then calibrate the parameters of
the model to values that are standard in the literature and compare, along different di-
mensions, the first-order certainty equivalent (CE) solution to the first- and second-order
approximations obtained from perturbation. We show that each of the approximations
converges to different long-run equilibria or fixed points in the absence of shocks. While
the first-order CE converges to the deterministic steady state, risk-adjusted solutions
converge to their respective risky steady states. This property is reflected in the policy
and impulse response functions.

We find that the risk effects captured by the first-order approximation in continuous
time are economically significant. We assess the asset pricing implications of the approxi-
mations using a partial differential equation approach rather than the standard simulation
approach used in discrete time. When relying on the linear CE solution the pricing errors
are about 1 dollar for each 100 dollar spent. The risk-adjustment of the first-order pertur-
bation approximation leads to errors of about 10 cents for each 100 dollar spent, reducing
pricing errors by about 90%. In the second-order perturbation approximation, pricing
errors fall further to about 3 cents. We also find that the continuous-time first-order
approximation is especially useful in situations in which risk matters but nonlinearities
are negligible.

Our work relates to that of Collard and Juillard (2001), Coeurdacier et al. (2011),
de Groot (2013), Meyer-Gohde (2015) and Lopez et al. (2018), who compute first-order
approximations around the model’s risky steady state instead of the deterministic steady
state in order to break certainty equivalence in discrete-time models. Collard and Juil-
lard (2001) consider a bias reduction procedure to compute the approximation around the
risky steady state; Coeurdacier et al. (2011), whose approach is generalized by de Groot
(2013), approximate the risky steady state based on the second-order solution. Meyer-
Gohde (2015) constructs a risk-sensitive linear approximation using policy functions re-
sulting from higher-order perturbations. Lopez et al. (2018) differ from the previous
studies as they consider lognormal affine approximations, often used in macro-finance,
which are shown to be a special case of a first-order perturbation around the risky steady
state. We argue that it is possible to account for risk in an economically meaningful way

using standard first-order (linear) perturbations around the deterministic steady state



when time evolves continuously.

The rest of the paper is organized as follows. In Section 2, we introduce our model
and define the equilibrium conditions used in the perturbation method to approximate
the solution. Section 3 summarizes the perturbation approach and revisits the property
of certainty equivalence in linear models. Section 4 derives the pricing implications of the
approximated solution and introduces a pricing error measure that can be used to evalu-
ate the accuracy of the approximation. Section 5 discusses the main results by comparing
policy functions, impulse-response functions, and pricing errors for different degrees of

approximation. Finally, Section 6 concludes.

2 A prototype RBC model

For illustration, we use a continuous-time version of the real business cycle model (RBC)
introduced in Jermann (1998) with some minor modifications. There is a single good
in the economy that is produced using a constant-returns-to-scale production technol-
ogy that is subject to random shocks in productivity. Changes in the economy’s ag-
gregate capital stock are subject to adjustment costs, and the household preferences
exhibit intertemporal non-separabilities due to internal habit formation in consumption.
A discrete-time version of the model can be found in accompanying web appendix.
Preferences. The economy is inhabited by a large number of identical households that

maximize their expected discounted lifetime utility from consumption, C},
Up = Eo {/ e Pu (Cy, Xy) dt| (1)
0

where E [-] is the expectation operator conditional on the information available at time
t =0, p > 0is the household’s subjective discount rate, and u is the instantaneous utility

function. For simplicity we assume that

(C — X)1=

u(C,X) = T

, 2)
where v measures the curvature of the utility function (together with the consumption
surplus ratio) so, ceteris paribus, a higher value of 7 yields higher risk aversion. In what
follows, we assume that the consumption choice is non-negative, C; > 0, and does not fall
below a subsistence level of consumption, C; > X;, where X; denotes habits in consump-
tion. Hence, the instantaneous utility in (1) is said to exhibit adjacent complementarity
in consumption (see Ryder and Heal, 1973), where an increase in consumption today
increases the marginal utility of consumption at adjacent dates relative to the marginal
utility of consumption at distant ones. The habit level in consumption is defined endoge-

nously (internal habit) in the model, in contrast to the relative consumption model or



‘catching up with the Joneses’ (external habit), where the habit is aggregate consumption

and thus exogenous to the households. In particular, the habit process is given by
t
X, =e "X, + b/ e“(s’t)Csds, Xo >0,
0

or equivalently,

dXt = (th - CLXt)dt (3)

Hence, X; is a weighted sum of past consumption, with weights declining exponentially
into the past. The larger is b, the less weight is given to past consumption in determining
X, and vice versa. The special case b = Xy = 0 corresponds to the case of time-separable
utility with constant relative risk aversion (see Constantinides, 1990). The parameter a
measures the degree of persistence in the habit stock.

Technology. The one good in the economy is produced according to a Cobb-Douglas
production function

Y, = exp(A)KPLI, 0<a <], (4)

where K is the aggregate capital stock, L, is the perfectly inelastic labor supply (normal-
ized to one for all ¢ > 0), and A, is a stochastic process representing random total factor
productivity (TFP). The aggregate capital stock in the economy increases if effective

investment exceeds depreciation
dKy = (®(1;/Ky) — 0)Kdt, Koy > 0, (5)

where 0 > 0 is the depreciation rate, and I, is aggregate investment. Following Jermann

(1998), the capital adjustment cost function is defined by

ay
1—1/¢

where £ > 0 denotes the elasticity of the investment-to-capital ratio with respect to

O(L/Ky) =

(Ie/ K" + o, (6)

Tobin’s ¢, and a; > 0 and ay > 0 are parameters. In line with Boldrin et al. (2001), we
set a; = 6'/¢ and ay = 6/(1 — &) such that the steady state is invariant to &, and hence
the long-run investment-to-capital ratio equals the deprecation rate'. On the other hand,
TFP is assumed to follow an Ornstein-Uhlenbeck process with mean reversion p4 > 0
and variance o4 > 0

dA; = —paAydt + 04dByy, (7)

where By, is a standard Brownian motion. In equilibrium, the economy satisfies the

!Given this parameterization it can be shown that in the steady state: ®(I/K) = ®(8) = 6, ®'(I/K) =
®'(§) =1, and "(I/K) = 9"(6) = —1/(&9), i.e. the slope of &’ depends negatively on & and 4.



aggregate resource constraint

Y, = C, + I, (8)

Optimality conditions. Consider the problem faced by a social planner who has to
choose the path for consumption that maximizes (1) subject to the dynamic constraints
(3), (5), and (7), and the static constraints (4), (6), and (8)

V (Ko, Xo, Ag) = {sz)rfltlgﬂ?ﬂgio Up st (3)—(8), (9)
in which C is the control variable at time ¢ € Rt and V(Kj, Xg, Ag) = Vp is the value
of the optimal plan (value function) from the perspective of time ¢ = 0, i.e., when the
state of the economy is described by the time ¢ = 0 values for the capital stock, Ky, the
stock of habits, Xy, and the total factor productivity, Ag.

As shown in Appendix A, for any ¢ € [0,00), a necessary condition for optimality is

given by the Hamilton-Jacobi-Bellman (HJB) equation

o:cg%@{giiﬁél+ow@mm®Ka—cyKﬂ(—MQm<

+ (bC — aX)Vx — paAVy + %UZVAA - /)V}a (10)

where Vi = 0V (K, X, A)/0K, Vx = OV(K,X,A)/0X and V4 = V(K, X, A)/0A, and
Vaa = 0*V(K, X, A)/OA? denote, respectively, the first-order partial derivatives and the
second-order partial derivative of the value function with respect to the states of the

economy?. The first order condition for any interior solution reads

(C—Xr”+mg:¢vcmm®Ka_C>wa (11)

K
making optimal consumption an implicit function of the state variables, C* = C(K, X, A).
The function C (-) maps every possible values of the states of the economy at time ¢ into

the optimal consumption at time ¢. The maximized HJB equation reads

(C(K,X,A)— X))

0= 1=~

+ (P((exp(A)K* — C(K,X,A))/K)K — 6K)Vk

+ (bC(K, X, A) — aX)Vx — paAVa + §05Vaa — pV, (12)

which together with the first order condition (11) determine the unknown functions

V(K,X,A) and C(K, X, A) that define the equilibrium in the economy.

2A formal introduction and derivation of the dynamic programming equation for continuous-time
problems can be found in Chang (2009). In what follows, we omit the use of the time index given the
recursive structure of the HJB equation.



FEquilibrium dynamics. A solution to the continuum of problems formed by (11) and
(12) can be characterized in the time-space domain by a sequence {Vi ¢, Vx 1, Ky, Xty At}
that solves the boundary value problem (with appropriate transversality conditions) char-

acterized by the system of equilibrium stochastic differential equations (SDEs)

dVie = (p— P((exp(A) K7 — )/ Ky) — ' ((exp(A) K — C1)/ Ky)

x[(a — 1) exp(A) KXt + Cy /K] + 8)Vigsdt + VigasoadBay (13)

dVx: = (p+a)Vxs+ (Cr — X)77)dt + VxaoadBay (14)
dK; = (@ ((exp(A)Ky — Cy) /Ky) Ky — 0K,) dt (15)
dX; = (bC; —aX;)dt (16)
dA, = —paAudt+ oadBuay, (17)

together with initial conditions K (0) = Ky, X (0) = Xy, and A (0) = Ay and where C;
solves the non-linear algebraic equation in (11).

Alternatively, we may eliminate time and shocks from the system of equilibrium SDEs
in (13)-(17) and define the solution to the optimal control problem in the state-space
domain as the triple {Vi (K, X, A), Vx (K, X,A),C (K, X, A)} for admissible values of
the state space (K, X, A) that solves the system of partial differential equations (PDEs)

0 = (p—d((exp(A)K" — C)/K) — &' ((exp(A)K* — C)/K)((a — 1) exp(A) K~
+C/K) +0)Vk — (P((exp(A)K* — C)/K)K — 0K )Vkk

—(bC — aX)Vxg + padVax — 2053 Vaux (18)
0 = (p+a)Vx +(C—X)7 — (B((exp(A)K* — O)/K)K — 6K)Vicx

—(bC — aX)Vxx 4+ paAVax — 503 Vaax (19)
0 = (C—=X)"7+bVy — & ((exp(A)K* — C)/K) V. (20)

A complete derivation of both the equilibrium system of SDEs in the time-space domain,

and its PDE representation in the state-space domain can be found in Appendix A.
Deterministic steady state. In the absence of uncertainty (i.e. o4 = 0), the economy

converges over time to a fixed point or steady-state equilibrium in which all variables

are idle. Given the assumptions on the capital adjustment cost function in (6), the



deterministic steady state of the model is fully characterized by

A =0 (21)
K = [o/(p+0)7= (22)
C = K'-0K (23)
X = (b/a)C (24)
Vy = —[1/(p+a)](C-X)" (25)
Vi = [1-b/(p+a)](C-X) ", (26)

where Vx and V are the deterministic steady state values of the costate variables for
the capital stock and the habit formation. For a detailed derivation of the model’s de-

terministic steady state see Appendix A.

3 Approximate solution

Most dynamic economic models do not admit an analytical solution, so it usually has
to be approximated using numerical methods (see Ferndndez-Villaverde et al., 2006).
Perturbation methods are fast and reliable, and provide an approximate solution to the
stochastic optimal control problem in (9) based on the implicit function theorem and the
Taylor’s series expansion theorem. The perturbed solution consists of a polynomial that
approximates the true solution of the problem locally in a neighborhood of an a prior:
known solution. In what follows, we build the perturbation solution to the equilibrium
system of PDEs in (18)-(20) around the deterministic steady state given by (21)-(26).
Let n > 0 denote a perturbation parameter that rescales the amount of risk in the econ-
omy. For continuous-time stochastic optimal control problems, Fleming (1971) showed
that by choosing 1 to control the variance of the exogenous disturbances, it is possible
to use regular perturbation theory to obtain asymptotically valid approximations to the
unknown policy functions (see Judd, 1996; Gaspar and Judd, 1997)*. As shown below,
choosing instead 7 to control the standard deviation of the exogenous shocks would re-
sult in certainty equivalent approximations, missing the effects of risk. Therefore, the

exogenous stochastic processes for TFP (7) is rewritten as
dAt = —pAAtdt + 770'124dBA’t,

where the case 7 = 0 makes the model deterministic, and n = 1 recovers the true TFP

3This is in contrast to discrete-time stochastic problems, where the perturbation parameter rescales
the standard deviation of the shocks (see Schmitt-Grohe and Uribe, 2004; Ferndndez-Villaverde et al.,
2016). Choosing instead the variance of the shocks as the perturbation parameter produces approxima-
tions with undesirable stochastic properties as shown in Jin and Judd (2002).



process in (7). Following Judd (1998), the perturbation method can be summarized as

follows:

1. Express the problem of interest as a continuum of problems parameterized by the

added perturbation parameter 7, with the n = 0 case known.

2. Differentiate the continuum of problems with respect to the state variables and the

perturbation parameter 7.

3. Solve the resulting equation for the implicitly defined derivatives at the known

solution of the state variables and n = 0.

4. Compute the desired order of approximation by means of Taylor’s theorem. Set

1n = 1 to recover the approximation to the original model.

In what follows, we introduce a general framework for the perturbation method for
continuous-time models*. We then provide an illustrative example of the method by using
a simplified version of our prototype model. Subsequently, we explain why the property
of certainty equivalence that usually results from any first-order perturbation approxima-
tion to discrete-time models breaks in continuous-time models. Finally, we introduce the
notion of the risky steady state, which will become relevant for understanding transition

paths from the model.

3.1 Solving the model: A general framework

In continuous time, the general equilibrium can be represented by the functional equation

H (Y, ¥x Yxx: X51) = 0, (27)

where y denotes the vector of control (or costate) variables; y, and yxx the matrices
of first- and second-order partial derivatives of the control variables with respect to the
vector of state variables x, 7 is the perturbation parameter, and H is a functional oper-
ator collecting the model’s equilibrium conditions. The state vector x evolves over time

according to the controlled stochastic differential equation
dXt =f (Xt; yt) dt + \/ﬁG (Xt) dBt, (28)

where f () is the drift vector, G (-) is a diffusion matrix, potentially dependent on the

current value of the state vector, and By is the vector of exogenous shocks.

4A description of the perturbation method for discrete-time models can be found in the accompanying
web appendix and the references therein.
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A solution to the functional equation in (27) takes the form

y =g(xn), (29)

where g (-) is a vector of policy functions that maps every possible value of x into y.
The deterministic steady state of the model in (27) is defined as the tuple (¥, ¥y, Vx> X)
that satisfies

H(Y ¥x: Yxx: X:0) = 0. (30)

Accordingly, it follows that in the steady state y = g (X;0).
A perturbation-based approximation to the solution of the problem in (27) starts by
plugging the unknown solution (29) into the functional equation H to obtain the new

operator

F(x;m) :=H(g(x3n),8x (X51) , 8xx (X31) ,%;m) = 0, (31)

where gy is the matrix of first-order partial derivatives of the policy function, and gy is
the matrix of second-order partial derivatives’. The perturbation approximation exploits
the fact that if F' (x;7n) = 0 for any admissible values of x and 7, then its derivatives must
also be zero. That is, Fx,; (x;1) = 0, for all x € x,n,k,j, where Fyx,; (x;1) denotes
the k-th derivative of F' with respect to the state variable = € x, and with respect to n
taken j times, evaluated at (x;n).

Let k = 1. Then, the First-Order approximation around the deterministic steady

state to the policy functions is defined by

g(x;n) = g(X;0) + g«(X;0)(x — X) + g,(X;0), (32)

where the coefficient g4 (X;0) corresponds to the stable solution to the quadratic matrix-
equation that results from solving Fy (X;0) = 0. Similarly, g,(X;0) is the solution to
the linear system of equations F), (X;0) = 0. As opposed to perturbation of stochastic
discrete-time models, this constant is not necessarily zero in continuous time when the
perturbation is built on the variance of the shocks (see Judd, 1996). Therefore, the First-
Order approximation in (32) includes a correction term that captures the effects of risk,
i.e., it is risk-sensitive, and hence it does not exhibit certainty equivalence. By setting
g,(X;0) = 0 in (32) we define the corresponding First-Order Certainty Equivalent (CE)
approximation.

Now let k = 2. Then, the Second-Order approximation to the unknown policy function

5As opposed to discrete-time models, the solution to the type of continuous-time models considered
here does not require the approximation of a policy function for the next period state variables. However,
their values at a given point in time can be recovered, ez-post, by solving the corresponding (controlled)
differential equations in (28).

11



around the deterministic steady state is defined by

g(x;1) ~ g(X;0) + gx(X; 0)(x — X) + g,(X; 0)
+ 28xx(X;0)(x — X) @ (x — X) + 8xy(X; 0)(x — X) + 38,(X;0) (33)

where the remaining unknown coefficients are obtained as the solution to the linear sys-
tem of equations formed by F,,(X;0) = 0 for all z;,7; € x, F,,(X;0) = 0 for all
x; € x, and F,,(X;0) = 0. In contrast to the discrete-time case, all the coefficients from
the Second-Order approximation are different from zero. Hence, it provides an additional
source of risk corrections beyond that already introduced through g, (X;0). While the lat-
ter, together with g,, (X;0), only affect the level of the policy functions, gx,(X;0) adjusts
their slopes, introducing in this way a time-varying risk correction component already in
a second-order approximation.

As discussed in Judd and Guu (1993) and Judd (1998), the risk-correction term in
(32) for noncertainty equivalent economies, requires information on the slope and cur-
vature of the optimal policy functions at the deterministic steady state, i.e. g,(X;0) =
g, (8x(X;0), 8xx(X;0)). Note that despite the need for second-order information, the ap-
proximated policy function remains linear in the states. Any higher-order information
needed in the computation of the risk-correction terms can be immediately and accurately
computed from the deterministic version of the model. For the First-Order perturbation,
this amounts to compute gyx(X;0) directly from the solution to the linear system of
equations formed by Fj,, (x;0) = 0 for all z;,z; € x evaluated at (X;0)°. Although the
first-order approximation for continuous-time models is more involved than the first-order
approximation for discrete-time models, it is less involved than a second-order approxi-

mation for discrete-time models.

3.2 An illustration: The stochastic growth model

To illustrate how the procedure described above works, consider the stochastic neoclas-
sical growth model which results from setting Xy = b = 0 and letting £ — oo in the
prototype model of Section 2. The HJB equation to the planner’s problem is

K A 7 L favik,A
VK, Ain) = max ¢ 7=+ 3 t[dV( : 777)}

6In general, knowledge of the first k derivatives of g(x;7) with respect to x, only provides information
to compute the first (k—2) derivatives of g, (x;n) with respect to x. For the Second-Order approximation
in (33), the computation of gx,(X;0) and g,,(X;0) requires information on gxxx(X;0) and gxxxx(X;0),
besides that already provided by gx(X;0) and gxx(X;0).

12



where the aggregate capital stock and TFP evolve according to:

th = (exp(At)Kto‘ — Ct — (SKt) dt, KO > 0, (34)
dA, = —paAdt + \/noddBa,, Ay > 0. (35)

Using 1t6’s lemma together with the properties of stochastic integrals, we can write the

HJB equation as

ct N
pV (K, Asn) = max {1 — + (exp(A)K* — C — 0K)Vk (K, A;n)

— paAVA(K, A;n) + 3n05Vaa(K, A; n)}- (36)

A complete derivation can be found in Appendix B. The equilibrium of the economy can
be characterized in the time-space domain by the sequence {Cy, Ky, A:}5°, that solves the

system of SDEs formed by the Euler equation for consumption

dc,  [aexp(ANEKe—6—p 1 Cas\’
= — 1 Ay
Ct ~ + 2 ( + /y) Ct N0 4
where Cy; = 0C (K, Ar;n)/0A:, together with (34) and (35). The deterministic steady-
state values of A, K, and C are given by (21), (22), and (23), respectively.

Alternatively, the equilibrium of the economy can be characterized in the state-space
domain by the PDE

C
dt+—5’t no4dBay, (37)
t

(avexp(A) K =6 = p) C/y + 3(1+7)C (Ca/C)* no’
— Ck (exp(A)K® — C — 6K) + CapaA — LCuano’ =0, (38)

which defines our functional operator H (C,Ck,Ca, Cxi,Can,Cxa, Cax, K, A;n) = 0,
with unknown solution C' = C' (K, A;n). Substituting the policy function into (38) yields

the functional equation

F(K,An) = H(C (K, Ain) , Ck (K, A;n), Ca (K, A;n) , Can (K, An) , K, Ayn) =0,
(39)
where we have already used the fact that in equilibrium Cxx = Cxa = Cax = 0 since
the capital stock is not affected directly by any exogenous shocks.

Let us first consider a first-order perturbation to the unknown policy function around
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the deterministic steady state
C (K, An)~ T+ Cx (K~ K) +Cu (A—A) + Ty, (10)

where C; = C; (F, A; 0) denotes partial derivative of the policy function with respect to
i-th state evaluated at the deterministic steady state. The constants C'x and C'4 are the
solution to the quadratic system of equations formed by Fi (K, A;0) = Fa(K, A;0) = 0.

In particular,

D=

-1

—_— 1 —_—

(cv eXp(A)Kaf — 6 —a(a—1) exp(A)Kada/y ,

16/7 :

COx = %(aexp(Z)FQ 5)i[

1
4

- >

Ca = (Ck+ ,OA)_l [UK exp(A)K” — aexp(A)K*”

For the stochastic growth model we pick the positive root, Cx > 0, since it is the one
that is consistent with a concave value function (see Parra-Alvarez, 2018). The remaining
constant, 677, corresponds to the solution of the linear equation Fn(f7 A;0) = 0, which
is given by

Cy=—(Cx) ' [{1+9) T (C4/C) — 4] 02 (41)

Hence, (41) shows that 577 # 0, suggesting that a first-order perturbation approxima-
tion to the optimal consumption function includes an adjustment for risk. Given the
concavity of the consumption function, C, is negative. This reflects the fact that risk
averse agents will consume less in the presence of risk due to precautionary savings. The
risk-correction term requires information on both the slope and the curvature of the op-
timal consumption function at the deterministic steady state. While Cx and C,4 are
already available, we still need C'44, which results from the solution to the linear system
of equations formed by Fix (K, A;0) = Fra(K, A;0) = Faa(K, A;0) =07,

3.3 An intuition: Why does certainty equivalence break?

The solution to stochastic economic models is said to be certainty equivalent if the re-
sulting policy functions are invariant to higher order moments of the model’s underlying
exogenous shocks. In other words, the solution of an economic model under uncertainty
is identical to the solution of the same model under certainty.

For discrete-time stochastic models certainty equivalence holds for any first-order
(linear) approximation around the deterministic steady state. In general, the optimal-
ity conditions that characterize economic equilibria in these models can be summarized
by a system of stochastic difference equations, where expectations regarding the future

value of the control variables need to be formed. Given that the policy functions are a

"Certainty equivalence will still hold, nonetheless, under the following assumptions on the stochastic
growth model: (i) zero risk, o4 = 0; (ii) quadratic utility, (1 ++) =0 and Ca4 = 0 (see Judd, 1996).
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priori unknown, the computation of such expectations can only be done ex-post once the
optimal controls have been approximated. Hence, for a first-order perturbation this is
equivalent to calculating the expected value of a set of linear functions which, according to
the linearity property of the expectation operator, implies that only first-order moments
will enter the approximated solution.

However, as exemplified by equation (41), this is not the case for continuous-time
stochastic models. To illustrate this point consider the non-linear HJB equation in (36),
where the expected continuation value (1/dt)E;[dV] has been already computed using
the tools from stochastic calculus. Having computed expectations in the HJB, the result-
ing Euler equation in (37) includes some features that account for the model’s underlying
risk. In particular, let us consider the quadratic term (1 +~)C (C4/C)? no?, which also
appears in the correction in (41). The first thing to note is that it contains the marginal
response of optimal consumption to changes in the exogenous driving force of the model,
C4, which is closely related to risk aversion. To see this recall that in equilibrium the op-
timal consumption function, C is related to the marginal utility of consumption, u’' (C),
and thus Cj is related to the first-order derivative of the marginal utility, u” (C'). Also
note that it contains the perturbation and the variance parameters which jointly capture
the amount of risk in the model, no?. Finally, note that the term 14+ can be shown to be
the coefficient of relative prudence for the case of CRRA utility functions. In contrast, as
expected values cannot be computed a priori for discrete-time models, the Euler equation
for consumption in that case will only include terms related to the marginal utility of
consumption, «’(C). If, in contrast, we choose the standard deviation of the shock to be
the perturbation parameter, then it is easy to show that the drift of the Euler equation
in (37) depends instead on the term n?c%. Thus, the risk correction in (41) will be a
function of 1 which implies 677 = 0, and thus certainty equivalence, when evaluated at
the deterministic steady state.

How this relates to certainty equivalence becomes clear when taking a closer look at
the precautionary motive, or prudence, that describes the optimal reaction of consump-
tion to risk. Prudence is related to the third derivative of the utility function, u” (C)®,
and its absence leads to certainty equivalence. Hence, a policy function that only con-
tains u” (C') will account for risk aversion, i.e., how much an agent dislikes risk, but not
for prudence and, thus, will be certainty equivalent. If, in addition, the policy function
involves the fourth derivative of the utility function, u* (C') < 0, then it will also account
for temperance, i.e., how the marginal propensity to consume responds to risk. Thus,
while the effects of risk on the level of consumption are captured by u” (C'), the effects
on the slope are captured by u® (C) (see Kimball, 1990a and Zeldes, 1989).

In terms of the approximation method note that a first-order (linear) perturbation to

8Absolute prudence is defined as —u" (C)/u” (C), while relative prudence is defined as

—u"" (C) C/u" (C) (see Kimball, 1990Db).
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Cont. Time Discrete Time
1st 2nd 1st 2nd 3rd

Risk effects on:  9"u/(0c)™ related to:

— n=2 risk aversion: —u"/u’ v v v v Y
level of C' n=3 prudence: —u" /u” v v v oV
slope of C' n=4 temperance: u® < 0 v v

Table 1. Effects of risk in perturbation solutions. The table indicates the order of the
derivative of the utility function 0"u/(dc)™ necessary to account for a particular effect of risk
on optimal consumption, as well as the order of approximation needed to capture it both in
continuous-time and discrete-time stochastic models.

the unknown consumption function requires computing the first derivative of the Euler
equation. Since its discrete-time version only contains «’ (C'), a first-order approximation
will just include terms up to the second derivative of the utility function and hence it will
account for risk aversion but not for prudence. Therefore, a first-order approximation in
discrete time will be certainty equivalent. In contrast, the continuous-time Euler equation
(37) already includes terms related to u' (C') and u” (C'), so its first-order approximation
will account for both risk aversion and prudence. The resulting policy functions in con-
tinuous time will not only depend on the mean of the exogenous shock but also on its
variance — breaking certainty equivalence. To break certainty equivalence in discrete time,
a second-order approximation is needed, which in continuous time already leads to cor-
rection terms in the slopes. Table 1 summarizes the discussion above by indicating which

order of approximation is required in order to account for a given risk effect.

3.4 Risky steady state

Similar to the concept of the deterministic steady state, we may define the risky or
stochastic steady state as the fixed point to which the dynamic economic system con-
verges to in the absence of shocks, but where o4 > 0. As discussed in Coeurdacier et al.
(2011), the risky steady state is of utmost relevance to the extent that it incorporates
relevant information regarding the future risk prospects of risk-averse economic agents.

Unfortunately, the computation of the risky steady state is not straightforward. Fol-
lowing its definition, we require information about how risk, as measured by the variance
of economic shocks, affects the policy functions, g (x; 1), which, ez-ante, are also unknown.
However, it is still possible to approximate its value by using the perturbation-based ap-
proximation of the policy functions around the deterministic steady state.

In particular, we define the risky steady state value of the state variables, x, as the

solution to the system of (non-linear) equations formed by

fx,gxn=1))=0, (42)
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where f (-) is the drift in (28) that results from (i) replacing the vector of controls y by
its perturbation-based approximation evaluated at the unknown risky steady state; (ii)
setting any future realization of economic shocks to zero, i.e. dB; = 0; and (iii) imposing
the stationarity condition dx;/dt = 0. Once x is computed, it is possible to compute the
risky steady state value for the control vector as y = g (x;n7 = 1).

Since it is already possible to account for risk in continuous time using a first-order
approximation, the approach in (42) can be used to build an approximation to the risky
steady state in a linear framework”. Hence, the first-order approximation of the risky

steady state is given by the solution to

0 = f(x,8(X0)+ gx«(X;0)(Xx — %) +8,(%;0)) (43)
y = g(X0) + g«(%;0)(x — X) + g,(X;0). (44)

A similar procedure can be used to build a k-th order approximation of the risky steady
state, for k > 1.

4 Asset pricing

This section investigates the economic implications of the approximated solutions by
measuring the pricing errors made when using the First-Order CE approximation, the
First-Order approximation, and the Second-Order approximation defined in Section 3.1.
The pricing mismatch is computed relative to a benchmark that is obtained using a global
non-linear projection method based on a Chebyshev polynomial approximation of the
unknown value function (see Parra-Alvarez, 2018; Posch, 2018). This approach delivers
highly accurate solutions but is costly in terms of computational efficiency. By comparing

the different pricing errors we can study how risk matters quantitatively for asset pricing.

4.1 Stochastic discount factor

We define the stochastic discount factor (SDF) as the process m;/m; , such that, for any

security with price P;, and a single payoff y, at some future date s > ¢, we obtain
tht = ]Et [msXs] = 1 = Et [(ms/mt)RS] ) (45)

where Ry = x,/F; is the security’s return, and m; is the present (discounted) value of
a unit of consumption in period t. Hence, the condition (45) can be used to discount

expected payoffs on any asset with a single payoff to find their equilibrium prices. In

9A similar methodology is available for the case of discrete-time models for perturbations of order 2
and higher (see de Groot, 2013). A summary of this procedure is described in the accompanying web
appendix.
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other words, investors will be indifferent between investing into the various assets only if
(45) is satisfied.

From the definition of expected discounted life-time utility (1), the instantaneous
utility function (2), and the first-order condition (11), we obtain the SDF for s > ¢
following Detemple and Zapatero (1991) as (see Appendix A)

) (Cs — X)) T+ bVx s
(Cy — X3) 7 + bVxy

mg/my = e P! for s>t (46)
where m; = e ?*(C; — X;)™7 + bV, is the present discounted value of a unit of consump-

tion at instant ¢ > 0.

4.2 Pricing errors

In what follows we define pricing errors as (see Lettau and Ludvigson, 2009)
gi = Ey[(ms/mi)R;s] — 1, (47)

based on the gross return on any tradable asset ¢ with instantaneous return, R; ;.
Risk-free asset. Consider a zero-coupon bond with sure payoff x;.+n = 1 at period
t+ N. From (45) we obtain the price of this zero-coupon bond as P}fj) = E; [(myrn/my)]
such that the return of this asset is Rgp{\t]) =1/ P}f;}), conditional on the information set
at time t. Unfortunately, we do not readily observe an instantaneous risk-free asset for
N — 0 with corresponding yield rf = limy_, R}{X). Any equilibrium return from a
risk-free sovereign bond carries a term premium for a given time-to-maturity N = s — ¢.
Zero-coupon bonds. To compute the price of a zero-coupon bond for a given time-to-
maturity N we use the partial differential equation (PDE) approach (see Posch, 2018).

Hence, in the absence of arbitrage opportunities, the fundamental price of a zero-coupon

bond with maturity NV, P}ftv), satisfies
E £y, ! 8Pf£’]tw+ l)dt=-E A, dm (48)
—_ - r e — —_
’ PE) P ON ' P my )

with boundary condition P}f? = 1, and where the SDF evolves according to

dm
—— = fedt + OmidBayg, (49)
my
where the drift, p,,+, and diffusion, o,,+, terms in (49) are functions of the policy func-
tions. Hence, they depend on the approximation method used (see Appendix A).

Assuming that the market price yields the efficient price under the physical probability
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measure P, the fundamental pricing equation can be written as

orY) 4 dm 1 1 dm
ft o L p QT (N) | *mP (N) P (N)y [ &4
s = B () b0 o (ar) + o () (222)).

t

where we used the fact that r/ = —+E; [dm¢/m,]. The physical probability measure is
defined in terms of the (true) policy function for consumption from the economic model.
In what follows, we assume that the latter is approximated accurately (in a global sense)
by means of projection methods. Note that the covariance of the prices with the SDF on
the right-hand side of (48) gives rise to a term premium.

Since in equilibrium all the time dependence of the zero-coupon bond price with
given time-to-maturity N comes through the state variables that drive the economys, i.e.,
P}f) = P}N)(Kt, Xy, Ay), an application of Itd’s lemma shows that the dynamics of the

bond’s price is given by

8P(N) 8P(N) p(N) 1 aQP(N)
AP = — LU dr, + —Ldx, + LdA, S dAy)®. 50
re = ar, et xRt gy At g (A (50)

Hence, the fundamental pricing equation can now be written as

ap(];f) N 8P(]X)
o = PR e (R((ep(A) KT — C(K X, A))[K0) = K,
N N
+ap—f(7t)(bC(Kt Xt At) — aXt) — pAAtan(7t)
X, i DA,
1o2pY , opy)
S : - 51
T oAz TaT Tgu, TATme (51)

The functional form of the solution to (51) is unknown. We use collocation meth-
ods to approximate the price function with the polynomial Pjg) ~ ¢(N, Ky, Xy, Ay)c, in
which c is a vector of unknown coefficients and ¢(-) denotes the Chebyshev basis matrix
with associated Chebyshev nodes. We extend the approximated PDE in (51) with the
boundary condition ¢(0, Ky, X;, A;)c = 1, where p denotes the degree of the approxima-
tion. The collocation approach provides accurate results and allows us to avoid tedious
numerical simulations.

Let 5%) represent a measure of ex-ante pricing errors on a zero-coupon bond with
time-to-maturity N, defined as the (absolute) percentage deviation of the price under the

subjective probability measure S relative to the physical probability measure P
e = E5(ma/mo)) /B [(m /my)] — 1. (52)

We define S to be the probability measure used by an investor that uses the perturbation
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approach to approximate the model’s policy function for consumption instead of the true
solution (i.e. it employs either the First-Order CE, the First-Order, or the Second-Order
approximation) in both the SDF dynamics in (49) and the bond-price PDE in (50). Let
PJEZ) denote the price that solves (51) under the subjective probability measure S.

By using the PDE approach it is possible to shed light on the sources of pricing
errors. First, the risk-free rate is poorly approximated. Second, the covariance of the
price dynamics with the SDF is poorly captured. And third, the approximation to the
consumption function alone is inaccurate. Hence, we can decompose the pricing errors
into misspecification of: (i) the risk-free rate (or drift of the SDF), 7/ = —pin¢; (ii) the
term premium that arises from the covariance component, (OPJEQ]) JOAL)TACH,; and (iii)
the price dynamics E;(dP; N))/P(N :

To analyze the different sources of pricing mismatch, we define the ex-post pricing
errors as the (absolute) percentage deviation of the price under the subjective probability
measure S relative to the physical measure P, but where the investor can observe the

correct /true SDF dynamics either partially

ey =B [(mn/mo)l1,, = pma] JEF [(mn /me)] — 1, (53)
or completely
eV =B [(mu/ma)li,y = fimis 050y = 0] JEE [(mn/my)] — 1. (54)

Hence, the measures in (53) and (54) focus on the pricing error reduction obtained by
providing further information on the SDF dynamics. For example in (54), the investor

infers the correct SDF from the data, and solves the corresponding PDE

orfY ()

ON

1 oPy
— i P — (dpuv))
pniPre + B (48) + | 5,

> P(N) OAOm ¢,

with the approximated price P}f) (in the same way we define P}f;j)). This enables us to
study the hypothetical error an investor would face ex-post when trading the asset at the

subjective (approximated) price instead of true P;t , yet knowing the SDF dynamics.

5 Results

5.1 Calibration

To quantitatively evaluate the extent to which the First-Order approximation can ac-
count for the effects of risk we proceed to calibrate the prototype model of Section 2

to an annual frequency. Therefore, all the parameter values should be interpreted ac-
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Parameter Value Source / Target

Discounting, p 0.0410 Jermann (1998)

Risk aversion, vy 2.0000 Aruoba et al. (2006)

Depreciation rate, 0 0.0963 Jermann (1998)

Capital share in output, « 0.3600 Jermann (1998)

Persistence TFP, py 0.2052 Aruoba et al. (2006)

Volatility TFP, o4 0.0307 U.S. real GDP growth volatility

Adjustment cost, & 0.3261 Short-term return on government
bonds reported in Jermann (1998)

Habit current cons., b 0.8200 Jermann (1998)

Habit past cons., a 1.0000 Jermann (1998)

Table 2. Parameter values. The parameters of the model are calibrated to an annual
frequency and their values should be interpreted accordingly.

cordingly. Many of the parameter values are chosen to replicate the parameterization to
the U.S. economy used in the discrete-time models of Jermann (1998) and Aruoba et al.
(2006). A complete summary of the model’s calibration is provided in Table 2.

In particular, we set the risk aversion parameter and the share of capital income to v =
2 and a = 0.36, respectively. The values for the subjective discount rate, the depreciation
rate and the habit process are set to p = 0.041, 6 = 0.0963, and a = 1 and b = 0.82, re-
spectively. These parameter values are consistent with steady-state values for the capital-
output ratio, and the consumption and investment shares in aggregate output of around
2.5, and 76% and 24%, respectively. We fix the adjustment cost parameter to & = 0.3261
such that the model produces an average real return on short term government bonds close
to that reported in Jermann (1998). Finally, the persistence of TFP is set to p4 = 0.2052
which corresponds to the continuously compounded value of that in Aruoba et al. (2006),
while its volatility is set to o4 = 0.0307 to target the relative growth volatilities (relative
standard deviations) of consumption and investment to output, and which is consistent
with the observed volatility of real GDP growth in the U.S. for the period 1954-1989.

Table 3 reports some of the moments implied by different parameterizations of our
RBC model when solved by a first-order perturbation and a global approximation method
based on collocations. Along with the prototype model of Section 2 (Benchmark), we re-
port the moments for the model without habit formation and no capital adjustment cost of
Section 3.2 (No habits, no adj. costs, i.e. b = Xy =0 and £ — 00), no capital adjustment
cost (Habit, no adjustment costs, i.e, £ — 00), and without habits (Adjustment costs, no
habits, i.e., b = Xy = 0). The last row in the table shows the moments reported by Jer-
mann (1998) for U.S. data from 1954-1989. The relative standard deviations for quarterly
consumption and investment growth correspond to averages over 100,000 samples gener-
ated through a FEuler-Maruyama discretization scheme with precision A = 0.0125, each

of them consisting of 10 years of simulated data, initialized at the deterministic steady
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Model version oc/oy or/oy Rgcot'%)

Pert. Global Pert. Global Pert. Global
Benchmark 0.45 0.44 2.65 2.69 | 0.37 (4.99) 0.68 (5.17)
No habits, no adj. costs 0.34 0.34 3.00 3.01 4.09 (0.19) 4.11 (0.19)
Habit, no adj. costs 0.13 0.14 3.72 3.72 | 3.86 (0.26) 4.10 (0.19)
Adj. costs, no habits 1.12 1.11 0.68 0.66 | 3.77 (0.60) 3.85 (0.61)
U.S. Data (1954-1989) 0.51 2.65 0.80 (5.67)

Table 3. Moments from simulated data. The different moments are computed using
100,000 draws starting at the deterministic steady state. The policy functions are computed
using both a first-order perturbation (Pert.) and a global method (Global). For comparison,
U.S. data moments correspond to those in Jermann (1998). We report the standard deviation

(sd) of quarterly growth rates for output, oy, consumption, ¢, and investment, oy after 10

years; and the three-month yield R;Oi%) with sd in brackets (annualized, percentage terms).

state. Finally, the table also includes the three-month simulated yield-to-maturity for a
zero-coupon bond and the standard deviation of its simulated distribution.

We confirm that only the model with both habit formation and capital adjustment
costs generates the historical consumption and investment volatility relative to output,
and three-month bond yields with sufficient variability. Hence, in this model risk matters
quantitatively and we can use the parameterization in Table 2 to investigate the asset

pricing errors for the different solution methods (at the deterministic steady state).

5.2 Approximated policy functions

Figure 1 shows the first- and second-order perturbation approximations to the policy
function for consumption around the deterministic steady state for our prototype model
using the calibration in Table 2. The left panel shows optimal consumption along the
capital stock lattice for values 15% below and above its deterministic steady state, while
keeping the remaining state variables fixed at their deterministic steady state values.
The right panel plots optimal consumption along the habit formation lattice covering
values that are 15% above and below its deterministic steady state value. The figures also
indicate the deterministic and risky steady state values for consumption, capital stock and
habit. Their values are reported in Table 4, where we have also included a measure of the
risky steady state computed from a global approximation based on projection methods'".

The plot depicts two types of a first-order (linear) approximation to the optimal
consumption function. First, it shows the First-Order (CE) by the dotted line, which
resembles the first-order approximation one would obtain from a discrete-time version of

the model. By construction, this approximation is invariant to the amount of volatil-

10The second-order risky steady-state values for the corresponding discrete-time model approximated
with the approach in de Groot (2013) are very close to the second-order risky-steady state values that
we report in Table 4.
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Figure 1. Approximated policy function for consumption: First- and second-order
approximations to the policy function for consumption around the deterministic steady state
along the capital stock lattice (left panel) and the habit lattice (right panel), while keeping the
remaining state variables at their corresponding deterministic steady-state values. Values on
the horizontal axis represent deviations from deterministic steady-state values. A circle denotes
the deterministic steady state, a star denotes the first-order approximation to the risky steady
state, and a square denotes the second-order approximation to the risky steady state.

ity in the model, and hence is certainty equivalent. Second, the solid line depicts
the First-Order approximation that corresponds to the first-order perturbation solu-
tion that breaks certainty equivalence as it includes the (constant) risk correction term
5,7 = C, (?, X, A; O) # 0. Hence, while still being a linear approximate solution, it is
risk sensitive as its intercept depends on the amount of uncertainty in the model. As
a comparison, we plot the Second-Order approximation (dashed line) to illustrate the
additional risk correction attainable when using higher orders of approximation.

Two things are worth mentioning at this point. First, note that the First-Order (CE)
policy function for consumption, which by construction passes through the deterministic
steady state, lays above the other two alternative approximations. The reason is that the
latter account for the effects of risk, and hence imply lower consumption levels along the
entire state space. In particular, the First-Order approximation is parallel to the First-
Order (CE), and for values of the state space in a neighborhood of the deterministic steady
state, it will imply levels of consumption that are relatively close to those suggested by
the Second-Order, and hence, a non-linear approximation. Second, the risky steady states
computed from the First- and Second-Order approximations command higher values for
the capital stock, habits, and consumption over the long-run, relative to those implied by
the deterministic case. This result can be confirmed by looking at Table 4. The higher
risky steady-state values result from households that consume less and save more in the
short run due to precautionary motives and hence imply higher levels of capital stock

and consumption over the long run.
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Variable ‘ Deterministic ‘ Mean ‘ Risky

First-Order  Second-Order Global
A 0 0 0 0 0
X 1.0541 1.0533 1.0589 1.0593 1.0592
K 4.5077 4.5662 4.6582 4.6693 4.6655
C 1.2854 1.2847 1.2914 1.2918 1.2917

Table 4. Steady states values. The table reports steady-state values for all the variables in
the model. It includes the exact deterministic steady-state values, the simulated ergodic mean
(global solution), as well as the first- and second-order approximated risky steady-state values.
A global approximation to the risky steady state is included as a benchmark.

A detailed summary of the approximated policy function for consumption is presented
in Table 5, where we report the loadings from the first- and second-order perturbations
associated to each of the state variables. Columns 2 and 4 show the coefficients for the
continuous-time model, while columns 3 and 5 do the same for its discrete-time version'.
Comparing the first-order approximations in columns 2 and 3 confirms that we break
certainty equivalence when time is continuous. Following our previous discussion, the
constant risk correction of —0.0020 implied by our calibration, which is otherwise absent
in the solution to the discrete-time model, suggests that a First-Order (CE) approxima-
tion overestimates optimal consumption in the presence of uncertainty along the entire
state space. Note how a similar risk correction of —0.0025 is obtained in a discrete-time
framework when using a second-order, and hence non-linear, approximation. Comparing
columns 4 and 5 reveals that a second-order perturbation in continuous-time includes
not only an additional adjustment in the constant term of the approximation, érm # 0,
but also in the slopes of the policy function implying a time-varying risk correction.
As suggested in Andreasen (2012), these two additional effects can only be achieved in

discrete-time models by computing third-order approximations (see Table 1).

5.3 Impulse response functions

Having approximated the unknown policy function, we now compute the impulse-response
functions (IRF) in order to compare how the different degrees of approximation capture
the amplification and propagation mechanisms of the prototype economy to a temporary
shock on the level of TFP. The results are presented in Figure 2, where we plot the tran-
sitional dynamics of consumption, capital stock, habits, and output over the course of
60 years after a one-time unexpected increase in TFP equal to o4. Prior to the shock,
all the variables are assumed equal to their respective stationary values. Thus, while the

First-Order (CE) solution is initially resting at the deterministic steady state, the First-

1 The first- and second-order approximations to the policy functions that solve the corresponding
discrete-time model are computed using Dynare.
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First-Order Second-Order

Cont. time Disc. time Cont. time Disc. time
C 1.2854 1.2854 1.2854 1.2854
C, —0.0020 0 —0.0020 0
(K - K) 0.0315 0.0290 0.0315 0.0290
(X - X) 0.6680 0.7042 0.6680 0.7042
(A - A) 0.5370 0.4899 0.5370 0.4899
Chn - - —0.0000 —0.0025
(K—K)xn - - —0.0003 0
(X —X) xn - - 0.0020 0
(A—4) xn - - —0.0063 0
(K -K)’ - - —0.0049 —0.0046
(X - X)* . - —0.1930 —0.2089
(A—A)° - - —0.3119 —0.3663
(K-K) x (X -X) - - 0.0402 0.0389
(K —K) x (A—A) - - —0.0282 —0.0286
(A-A4) x (X -X) - - 0.6508 0.6942

Table 5. Loadings of policy function for consumption. The table reports the coef-
ficients from first- and second-order approximations to the policy function for consumption,
C =C(K,X,A;n), around the deterministic steady state (6, K, Z) for the model in Section 2
and its equivalent discrete-time version.

and Second-Order solutions are resting at their respective (approximate) risky steady
states. Again, the CE solution can be thought of as a proxy for the IRF one would ob-
tain from a first-order perturbation to an equivalent discrete-time model. For comparison
purposes we report the first- and second-order IRFs for the discrete-time model in the
accompanying web appendix.

Note that the IRFs for the First-Order (CE) lay below the risk-sensitive approxi-
mations in Figure 2. Intuitively, since the constant correction term for the First-Order
approximation is negative, 677 < 0, one may expect that the consumption response ap-
proximated by a First-Order will be below the one approximated by First-Order (CE).
However, as shown in Figure 1 and Table 4, the risk-correction reduction in consump-
tion induced by the former will in fact lead to a higher risky steady-state capital stock
and, thereby, a higher risky steady-state level of consumption. Thus, the fact that the
First-Order (CE) is below the First-Order and Second-Order responses is explained by
the differences in their fixed points, or long-run convergence levels, hence cannot readily
interpreted as an indication that certainty equivalent approximations underestimate the
response of macroeconomic variables to aggregate shocks. Furthermore, note that the
additional risk-corrections provided by the Second-Order approximation (and hence non-
linear) have only minor effects on the optimal reaction of consumption to a TFP shock.

In other words, the risk-correction in the first-order perturbation approach provides a
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Figure 2. Impulse-Response function to a one s.d. shock in TFP: Responses for the
annual levels of consumption, capital stock, habit formation and output to a one time shock
in TFP equivalent to one standard deviation, o 4. All the variables are assumed to be in their
corresponding steady states before the shock. A circle denotes the deterministic steady state, a
star denotes the first-order approximation to the risky steady state, and a square denotes the
second-order approximation to the risky steady state.

sensible approximation to the effects of risk in continuous-time models.

5.4 Asset pricing implications

In this section we investigate the ability of the different approximations to account for risk
when pricing assets. While others focus on accuracy measures based on the computation
of Euler equation errors (cf. Judd, 1998; Aruoba et al., 2006; Parra-Alvarez, 2018), we are
more interested in the implications that each of the approximations have on the pricing
mismatch incurred by an investor that does not have/use the ‘true’ solution of the model.

In what follows, we use the PDE approach introduced in Section 4 to assess to what
extent our first-order approximation can account for risk. Table 6 reports the absolute
pricing errors of a zero-coupon bond for different time-to-maturities when the economy is

at its deterministic steady state, s;N) = 5;N) (F, X, Z). We show the results for risk-free
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Global First-Order (CE)  First-Order Second-Order
el 0.0000 0.0095 0.0014 0.0003
ery) 0.0001 0.0001 0.0000
g2 0.0001 0.0000 0.0000
et 0.0000 0.0494 0.0065 0.0009
el 0.0017 0.0009 0.0001
e 0.0018 0.0000 0.0000
e 0.0000 0.4269 0.1742 0.0050
el 0.0243 0.0096 0.0069
el 0.0302 0.0017 0.0000

Table 6. Asset pricing implications for zero-coupon bonds. The table reports the
absolute pricing errors induced by different approximation methods on risk-free zero-coupon
bonds with time-to-maturity of three months, one year and five years when the SDF dynamics
are (a) are not observed, (b) partially observed (drift only) and (c¢) completely observed (drift
and diffusion).

bonds with a 3-month, 1 year and 5 years time-to-maturity. Column 2 (Global) provides
errors under the true probability measure P as obtained from a global approximation
using collocation methods; columns 3 — 5 report errors resulting from First-Order (CE),
First-Order, and Second-Order perturbation. Moreover, for each time-to-maturity, we
report errors for the cases in which the SDF dynamics are (a) not observed as in (52),
(b) partially observed (drift only) as in (53), or (c) fully observed (drift and diffusion) as
in (54). This means that in (a) we approximate the policy function as well as the drift
and diffusion of the SDF| in (b) we approximate the policy function and diffusion of the
SDF, and finally in (c) we only approximate the policy function.

Our results suggest that there are substantial gains from using the (risk-sensitive)
First-Order relative to the First-Order (CE) version. Consider the case of a three-month
zero-coupon bond with effective price of P{** = 0.9983. An investor relying on the cer-
tainty equivalent linear solution (First-Order (CE)), not just to approximate the policy
function but also the drift and diffusion of the SDF, will incur in pricing errors of about
1 dollar for each 100 dollar spent (55&25) = 0.95% in Column 3). If instead the investor
uses the First-Order approximation, the pricing error will be of the order of 10 cents for

each 100 dollars spent (5;%25)

= 0.14% in Column 4). Hence, breaking certainty equiv-
alence reduces the potential price mismatch by nearly 90% while still remaining in the
linear world. The Second-Order approximation further reduces pricing errors which fall
to about 3 cents per 100 dollars (55&25) = 0.03% in Column 5). Sizable gains are also
observed for bonds with longer time-to-maturities or from inferring the dynamics of the
SDF (drift and diffusion) from the data.

We find that although pricing errors increase as N increases, they can be substan-

tially reduced if the investor uses the true risk-free rate (or drift of the SDF'), which is
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Figure 3. Pricing errors: The left panel plots the absolute pricing errors for different

approximations. The right panel decomposes the pricing error incurred by using the CE solution
into a certainty equivalence component and a linearization component, where the line represents

|(First-Order) /(First-Order (CE)) — 1.

case (b). In fact, the pricing error for the First-Order approximation is below 10 cents
(sgcll)) = 0.09% in Column 4) for the one year ahead zero-coupon bond. Relative to the
First-Order (CE) solution, the risk-adjusted First-Order approximation reduces pricing
errors by about 50 percent for one year maturities when using the true risk-free rate. If
the investor further knows the true diffusion of the SDF, case (c), i.e., when only the pol-
icy functions are approximated, then the First-Order approximation also performs well
for a maturities of 5 years. Here, the error is about 20 cents (5;52 = 0.17% in Column 4),
which is 90% lower than the error from First-Order (CE) (5;52 = 3.02% in Column 3).

Figure 3 confirms our results for the case of ex-ante absolute pricing errors. Investors
using a First-Order (CE) solution, when the true data generating process (DGP) is the
global solution, would accept large and persistent pricing errors (see Lettau and Lud-
vigson, 2009): they range between one to five percent for bonds with time-to-maturities
from a quarter to a year (8;%25) = 0.95%, 6% = 4.94%). On the contrary, those using
the First-Order approximation can reduce these pricing errors by more than 85 percent
(2 = 0.14%, €}l) = 0.65%).

To better understand the sources of the pricing errors, the right panel of Figure 3
decomposes the pricing mismatch made when using the First-Order (CE) solution into:
(i) the error stemming from linearization in the presence of uncertainty; and (ii) the
error stemming from imposing certainty equivalence in the linear world. As (i) is given
by the error resulting from the First-Order approximation, (ii) results as the (absolute)

difference of the errors from the First-Order and the First-Order (CE) approximation,
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and hence provides a measure of pricing error reduction (relative to the true solution)'?.

Therefore, the red area measures the pricing error that can be attributed to imposing
certainty equivalence in the First-Order (CE) solution, while the blue area measures the
error that can be attributed to its linearization. As the red area suggests, between 60%
and 100% of the error stemming from the certainty equivalence solution for maturities
below five years can be reduced by the risk adjustment of the First-Order solution. For
a maturity of 1 year, for instance, 86% of the error in the First-Order (CE) solution can
be attributed to the presence of certainty equivalence itself and hence reduced by the
First-Order approximation. The remaining error resulting from the First-Order solution,
as indicated by the blue area, is inevitable in linear models.

Our results shed light on the key source of the weakness of the linear approximation
from perturbation in discrete-time models which results from its certainty equivalence
property rather than linearization. Thus, we can conclude that once the vice of certainty
equivalence is discarded, similar to the First-Order approximation in continuous time, one

may stay with linear models and at the same time account for risk in a reasonable manner.

6 Conclusions

In this paper we use the fact that certainty equivalence (CE) breaks in continuous-time
stochastic non-linear models when their rational expectation solution is approximated
by first-order perturbations. To this end, we use a production economy with stochas-
tic shocks to productivity, extended with habit formation and capital adjustment costs,
which are known to generate substantial risk effects (see Jermann, 1998). We study the
economic implications of breaking certainty equivalence in the linear approximation to
the continuous-time model and compare them to the associated effects obtained using a
CE solution, which is similar to that obtained using a first-order perturbation for discrete-
time models. The reason that CE already breaks in first order is that the continuous-time
formulation allows us to compute expectations before building the perturbation solution,
which is not possible in discrete time. Moreover, the perturbation approximation is built
around the variance of the shocks that drive the economy, and not around the standard
deviation, as it is commonly done for discrete-time models. We shed light and illus-
trate the differences in the perturbation solution of equivalent models in continuous and
discrete time and find substantial effects of risk.

To quantify the effects economically, we compute the asset pricing implications and

12The accompanying web appendix presents an alternative decomposition according to which we break
the pricing mismatch into: (i) the error stemming from certainty equivalence in the non-linear world,
which would result from a non-linear certainty equivalent solution; and (ii) the error stemming from
linearization under certainty equivalence. We conclude that the errors induced by certainty equivalence
and those by linearization are similar under both decompositions, which suggests that the entire error
stemming from certainty equivalence is removed by the First-Order approximation.
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pricing errors for the continuous-time model and show that the first-order already cap-
tures about 90 percent relative to the CE solution which, by construction, neglects the
effects of risk. The correction in slopes from the second-order approximation in contin-
uous time turns out to be small compared to the constant correction obtained in first
order. Therefore, the first-order approximation turns out to be especially useful in this
environment in which risk matters but nonlinearities are negligible.

We provide intuition why the first-order perturbation solution in continuous time
accounts for prudence and hence is not certainty equivalent. In fact, the risk effects cap-
tured by continuous-time perturbations materialize with lower orders of approximation
than those required by their (standard) discrete-time counterparts. Most prominent is
that the continuous-time perturbation solution has a constant correction in the first-order
approximation, which appears only in a second-order approximation in the discrete-time
model. Similarly, the correction in slopes appears in second-order approximation in the
continuous-time version, while it only appears in the third-order approximation in the
discrete-time model.

We show that the (constant) risk adjustment in the first-order approximation does
not only reduce pricing errors. First, we illustrate the effects for the resulting policy
functions and compare them to the numerically more costly nonlinear approach. While
the coefficients that are not associated with risk are close in discrete and continuous-time
depending on the order of approximation, the risk corrections differ substantially. Sec-
ond, we show how the risk adjustment affects the IRFs, which also reveals considerable
differences mainly in the levels and for the computation of fixed points.

Our results encourage the use of continuous-time perturbations to account for risk in
the class of (approximate) linear models. We believe this helps in the computation and
estimation of large-scale macroeconomic models. Given the advantages of the continuous-
time perturbation, future work should make these advantages more accessible by devel-

oping a toolbox that automates perturbation in continuous-time models.
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Appendix

A Stochastic optimal control problem

A.1 The HJB equation and the first-order conditions

The benevolent planner chooses a path for consumption in order to maximize the expected
discounted life-time utility of a representative household. Define the value of the optimal

program as

V(Kg, X(], A(]) = max U(] s.t. (3) — (8)

{CtZXt€R+}?io

in which C; > X, € R" denotes the control variable at instant t € R*.
As a first step, we define the Hamilton-Jacobi-Bellman equation (HJB) for any t €
[0, 00)

B C—-X) 1
O—Cg(aeﬁ+{ — + BV (K, X, A) = pV (KX A) o

[t0’s lemma imply

dV(K, X, A) = Vg(K, X, A)dK + Vx (K, X, A)dX
+ Va(K, X, A)dA + LVaa(K, X, A)oidt

where V;(K, X, A) = W, and V;;(K, X, A) = %@X"M for 7,7 = K, X, A. Using

the martingale difference properties of stochastic integrals, we arrive at

0= max {w + (CD (eXp(A)Ka — O) - 5) KV (K, X, A)

C>XeR+ 11— K

(6O — aX)Vx (K, X, A) — paAVA(K, X, A)

+ %UiVAA<K7 X> A) - pV(K>X7 A)}

The first-order condition for any interior solution reads

exp(A)K* - C
K

(C—X)_V—i—bVX(K,X,A):(I)’( )VK(K,X,A), (55)

making optimal consumption an implicit function of the state variables, C' = C(K, X, A),
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where ' (-) = ay (-)"/*. The maximized (concentrated) HIJB equation is then

0=

(C(K’Xff—l)y_ 7 (@(exP(A)Ka ;{C(K’ s A)> = 5) KV (K, X, A)

+ (bC(K, X, A) — aX)Vx (K, X, A) — paAVa(K, X, A)
+ %O_iVAA([Q Xa A) - pV(K, Xa A) (56)

A.2 Equilibrium in the time-space domain

Let Vi = *V(K, X, A)/(9id;jol) for any i,j,l = K, X, A. Then, using the maximized
HJB equation in (56) together with the envelope theorem we obtain the associated costate

variable with respect to capital, Vi,

PV = <<I>((exp(A)Ka —CO)/K)K — 5K) Vicw
+ (B((exp(A) K™ = C)/K) + @ (exp(A) K™ — C) /K ) (o — 1) exp(4) K"

+C/K)—5 Vi + (bC — aX VXK—pAAVAK—l-lO'iVAAK. (57)
2

On the other hand, the application of It6’s Lemma yields the evolution of (off-equilibrium)

Vi, as
AV = (@ ((exp(A)Ko‘ ~C)/K) - 5) KVix + (b0 — aX)Viex
— paAViga + %UiVKAA) dt + 04V adBy. (58)

Combining equations (57) and (58) we arrive at the following optimal /equilibrium stochas-
tic differential equation (SDE) for Vi

dVi = (p — @((exp(A)Ko‘ — C’)/K) — cI>’<(exp(A)K0‘ - C’)/K)
x <(a ~ 1) exp(A)K! + C’/K> + 5) Viedt + oaVieadBa. (59)
Similarly, the optimal costate variable with respect to the habit level, Vx;, reads

PV = (€ = X)7 + (@((exp(A)K” = €)) = 0) K Vicx,

+ (bC — CLX)VXX —aVx — pAAVAX + %U%VAA)(. (60)

Using It6’s Lemma, the evolution of the (off-equilibrium) costate variable with respect
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to the habit level is given by

dVy = ((@(exp(A)Ko‘ ~C/K) - 5) KVxx + (bC — aX)Vyx
— paAVxa + %UZVXAA) dt +oaVxadBa. (61)
Combining equations (60) and (61) we arrive at the optimal/equilibrium SDE for Vx
dVy = ((p +a)Vy + (C — X)’V)dt + o4V adBa. (62)

Then, the equilibrium of the economy in the time-space domain can be characterized
by the sequence {Vi+, Vi, Ki, Xi, At }52,, that solves the following system of SDEs
Wir = (p—Uexp(A)K? = C)/K) = @' ((exp(A) KT — C1)/ )
X ((a — 1) eXp(At)Ktail + Ct/Kt) + (5) VK’tdt + UAVKAtdBAﬂg
dVXﬂg = ((p + G)nyt —|— (CU — Xt)_7> dt —f- O'AVXA’tdBAJg

K, = (@(exp(A) KL — C)/Ky) — 6) Kt
dXt = (th — aXt)dt
dAt = —pAAtdt + O'AdBA’t,

together with initial conditions K (0) = Ky, X (0) = X, and A (0) = Ao, and where C;

is the solution to the non-linear algebraic equation:

A)KP —C,
(Ct—Xt)uva,t:qﬂ(eXp( K t>VK,t.

Ky

A.3 Equilibrium in the state-space domain

Following Posch (2018), the equilibrium can be alternatively defined in the space of states
by simply using the equilibrium partial differential equations (PDEs) for the costate
variables in (57) and (60). Together with the first order condition in (55) they form a
system of non-linear functional equations in the unknown policy functions {Vy, Vx,C} =

{Vk (K, X,A),Vx (K, X,A),C(K,X,A)}
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K K K

0 — (p_q)(exp(A)Ko‘ — C> B @,(exp(A)K“ —C) ((a— 1) exp(A) K> —i—C’) —I—5) Vi

AK® —C
_ (q) (eXp( ) ) - 5) KVicx = (bC = aX ) Vicre + padVax = 203 Vaax

K

0 = (p+a)Vx+(C—-X)"— <q> (exp(A)K“ - C) B 5) KV

K
—(bC — aX)Vxx + paAVax — %UiVAAX
exp(A)K* — C’) Ve

0 = (G—X)ubvx—cp'( =

where the dynamics of the state variables are given by the controlled SDEs

th = (q)((exp(At)Kta — Ct (Kt7 Xt) At))/Kt) — 5) tht
dXt = (th (Kt, Xt, At) — GXt) dt
dAt = —IOAAtdt + O-AdBA,t

subject to the initial conditions K (0) = Ky, X (0) = Xy and A (0) = A,.

A.4 Deterministic steady state

The deterministic steady state of the economy is given by the values {U, IV, Vx, K, X, E}

that solve the following system of equations

p—0(I/K)— & T/K) (o — 1) exp(AE* " +CT/K)+5=0
(p+a)Vx+(@C—-X)" =0
®(I/K)—-6=0

bC' —aX =0
(C-X)" 40V — & (I/E) Vi = 0
T/K - exp(A)K" - C _0
K
A=0,

(69)

which results from imposing 04 = 0 together the idle condition dK;/dt = dX,/dt =

dA;/dt = 0 on the equilibrium PDEs (57) and (60).

The solution to this system of non-linear equations is entirely determined by the

steady state value of the investment-capital ratio, I/K. Given the values of a; and as, it
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is possible to show that for any value of &
/K =4

Note that for the steady-state value of the investment-capital ratio, ®(d) = J, () = 1,
and ®"(I/K) = ®"(§) = —1/(£6). From (63) and (68) we find the steady-state value of

the capital stock as

Using (68) we find the steady-state value of consumption
C =exp(A)K" - K. (71)

From (66) we pin down the steady-state value of the habit as

— b
X aC (72)

Finally using (64) and (67) we find the steady-state values for the costate variables

Vi = ——(@-%)7 (73)
b

_p+a

Ve — (1_p+a> @-x%)". (74)

A.5 Stochastic discount factor

When the habit is internal the agent takes into account the effect of today’s consumption

decisions on the future levels of habits. Following Detemple and Zapatero (1991),

oo

/ e~ Pra=t (C X )77 ds] } (75)

t

my = kept{ (Ct — Xt)_ﬁ/ — b]Et

for some given constant k.

Using the (linear) equilibrium SDE for Vx in (62) we may write
e—(p—i—a)thX’t = 6_(p+a)t ((p + a) vX,t + (Ct — Xt)_’y) dt + 6_(p+a)tVXA7tO'AdBA7t,
or equivalently

e_(”+a)t(dVX,t — (p+a)Vx,dt) = e~ (pta)t (Cy — X)) 7dt + e_(p+“)tVXA7tJAdBA,t.
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Note that 1t6’s formula yields
d(e P yy) = —(p+a)e TV, + e PTIAVy,
such that
d(e= Ty ) = eI (C, — X)) dt + e TV o 4d Bay.
Integrating both sides yields
T T T
/ d(e_(p+a)SVX,s) = / 6—(p+a)s (Cs - AXVS)?’y ds + / e_(p—i_a)s‘/XA,so-AdBA,s
t t t
T
& Vxy = e erdd=Dy, / e~ Pras=t (0 — X,) " ds
t
T
- / e TV o adBas.
t
Applying the expectation operator (assuming existence of the integrals) implies
T
E, [Vth] — 6—(p+a)(T—t)Et [VX,T] —E, {/ e—(pFa)(s—1) (C X ) ol ds} '
t
Further, by letting limy_,o e~ T T-OE [Vx.r] =0, we may write
Vth = llm Et [VX,t] = _Et |:/ ef(PJra)(Sft) (CS _ XS)_'Y d8:|
T—o0 t
such that (75) can be written as
me= e[ (G = X0)7 + bV, (76)

so that the SDF, as defined in Section 4, is

(G = X)) 77 4 bVx,
(Cy — X)) +bVx,

ms/my; = e —p(s

Using [t0’s lemma, the dynamics of m; is given by

d
S fiedt + 0 d B, (77)

my
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where the drift and diffusion coefficients are

e e X ( )
= —p — C,— X — (bC, — a X,
Hom ¢ P (C— X))+ bVxs 7 (Cy t) pey — (bCy — aXy)
B X s — by (4 1) (G — X)) ac} (78)
and .,
C,— X;) _
o= ——C XKD 0 X) e —b(Ci— X ovd] . (79)

(Ct — )(15>_7 + bVX,t
Note that (78) and (79) depend on the drift and diffusion coefficients of the policy

functions for consumption and the habit costate variable. Using [t0’s lemma we can show

that they are given by

« 2
por = g o (SREELZC) ) Kot G 00 —aX) = Tl 40 o
pve = (p+a)Vx,+(Cr— X))
0C,
oct = 8_At0A
OVx
Ovyt = aAt gA.
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B The stochastic growth model

By letting Xy =0 =0 and £ — oo, the model in Section 2 collapses to

oo le“{
V(K@,Ao) = max ]EO |i/‘ €ptt—dt:|
{czo Lo 1-2

subject to

dK, = (exp(A)K* —C, —6K,)dt, Ky >0
dA, = —padydt +\/no%dBa,, Ap >0,

where we have included explicitly the perturbation parameter, n, that rescales the amount

of variance in the model. The associated HJB equation reads

A -
pV (K, Asn) = max -

+ (exp(A)K* — C — 0K)Vk(K, A;n)

The first order condition for an interior solution is
Cc = VK(Ka Aa 77)7

making optimal consumption a function of the state variables and the perturbation pa-
rameter, C* = C' (K, A;n). Substituting back, the maximized (concentrated) HJB equa-

tion reads

C(K, A;n)'—

K, A:n) =
pV (K, A;n) =

+ (exp(A)K* — C(K, A;n) — 0K)Vi (K, A;n)

— paAVA(K, A;n) + inoiVaa(K, A;n)

from which we can obtain the costate variable (using the envelope theorem) as

pVi (K, A;n) = (exp(A)K* — C(K, A;n) — 0K) Vi (K, A;n)
(aexp(A)K*' = §)Vi (K, A;n) — paAVar (K, A;n) + ino3Vaar (K, A;n)

such that

(p— aexp(A)K* +0) Vi (K, A;n) = (exp(A)K* — O(K, A;n) — 6K ) Vi (K, A;n)
— paAVak (K, A;n) + §n03Vaax (K, A;n).
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Using [t0’s Lemma, the evolution of the costate variable is given by

AV (K, A;n) = Vg (K, A;n)dK + Via(K, A;n)dA + 3005 Vicaa (K, A;n)dt
= (p—aexp(A)K* ' +0)Vi(K, A;n)dt + Vica(K, A;n)y/noddBa.

Using once again the first-order condition, we may alternatively write

dC;7 = (p — aexp(A) K™+ 6)C;7dt — ~C; 7 Cayr/noidBay

or

o, 1 B Car)’ Cay

— == ANKP =6 —p) + 301 1) pod| dt+ [ —=5F 2dB
c, 7(ozexp( ) K P)+2( -I—V)(Ct) noy +(Ct> no4dBay,

(80)
which is the Euler equation for consumption in (37). Together with (34) and (35), they
define the equilibrium of the economy in the time-space domain.

Alternatively, the equilibrium of this economy can be characterized in the space of
states by eliminating time and stochastic shocks from the previous equilibrium system.

To do so, note that It6’s lemma implies

dCt = CKﬂgth + CA’tdAt + %CA/Lﬂ]O'idf
= CK,t (eXp(At)Kft - Ot - (5Kt) dt
_CA,tpAAtdt -+ CA,t naidBA,t + %CAA’tﬁO'idt. (81)

Combining (80) and (81) yields
1 - ! Cas\®
S (exp(A) K} =6 —p) Cr + 2 (1 + )G, (?) no4
— Ckt (exp(Ay) K — Cy — 0K}) + CarpaAr — %CAA,tUUZ =0
which corresponds to the functional equation
H(C,Ck,Ca,Can, K, A;n) = 0.

Since the policy function C' = C' (K, A;n) is unknown, we approximate it by means
of a k-th order perturbation around the deterministic steady state. Substituting into the

functional H yield the new functional
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Consider the case of kK = 1. Hence, optimal consumption is approximated as
C(K,An)~C+Ck(K—-K)+Ca(A=A)+Cypn,

where C' is the deterministic steady-state value of consumption.
Let #; denote the partial derivative of #H (-) with respect to its j-th element. Then,

in order to find the yet unknown coefficients C'x, C'4 and 677 we compute

Fy (Ki, Ay;n) = HiCkx + HaCrx + HsCax + HaCanr +Hs =0
Fy (K, An) = H1Ca+ HoCra+ HzCan + HaCana+He =0
F77 (Kt, Ay 77) = 7‘[1077 + HgCKn + 7‘[30,477 + H4CAA77 +H; =0,

which evaluated at the deterministic steady state reduces to a system of three non-linear

equations in the three unknowns, Cr, Ca, ?,7, that can be solved recursively

FK(F,Z;O) == H16K+7'[5:0
Fa(K,4;0) = HiCa+He=0
F,(K,A;0) = H,C,+Hr =0,

where H1, Hs, H¢ and H; are also functions of the unknowns. In particular,

Fr (K,4;0) = (a exp(Z)Fa_l —0— 61{) % — %a (a—1) eXp(Z)fa_2

Since this derivative must be zero, we arrive to the quadratic equation

Cx — (a exp(Z)FQil - 5) Ok + ;oz (a—1) exp(A)Kaﬂa =0

with roots

— —a—2

(a eXp(Z)FOC_1 — 5) N <a exp(ﬁ)?a_l — 5)2 — 4%04 (v — 1) exp(A)K
2 4

_ C
Cx =

We pick the positive root since it is the only one that is consistent with a concave value
function V (K, A) in the capital stock. To see why, recall that the first-order condition

' (O (K7A)) = Vk (K7 A)a

together with the assumptions on the utility function u (C') imposes a necessary condition

for concavity of the value function. A sufficient condition for concavity is given by the
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derivative of the first order condition
u” (C (K, A)) CK (K, A) = VKK (K, A)

which suggests that Vi (K, A) < 0 if and only if Ck (K, A) > 0 given that «” (C') < 0.

We now solve for C'4 from

aexp(A) K
P C—-Ck (eXp(A)KQ—CA)+CApA.

Fa(K,A4;0) =

BNEN

Since this derivative must be zero, we arrive at the following linear equation

——a—1
LS

= ——a  aexp(

CK exp(A)K

— 1
C)p=—-———
(Ck + pa)

= |

which can be readily evaluated once Ck (f( LA, O) is computed from the first step.

Finally, we obtain UT, from
T A ralal 1 —(Ca i 2 _ 174, 2
Fn(K,A;O):CncK+§(1+’7)C ? O'A—icAAO'A,
and since F), (I_( LA; O) = 0, we arrive at the linear equation

Cyp=— (UK)i1

6 2
s(1+7)C (%) - %CAA] %

As explained in the main text, in order to complete the computation of the first-order
perturbation we need to compute the still unknown C44. This is done by constructing
the second order approximation to the deterministic version of the model which will result
in a linear system of equations in Cxx, Cxa, Cax, Caa. Once solved, the first order

approximation is complete.
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C The discrete-time model

This appendix introduces an equivalent discrete-time version of the prototype RBC model
studied in the paper. The model follows closely that in Jermann (1998). Table C1 gives a
summary of the model setup in continuous and discrete time. We also provide a summary
of the perturbation method for discrete-time economies in the spirit of Schmitt-Grohe
and Uribe (2004); Fernandez-Villaverde et al. (2016), and stress how certainty equivalence
results from a first-order approximation. Finally, we discuss the concept of risky steady

state and how to approximate it based on the work by de Groot (2013).

C.1 The social planner’s problem

Consider the problem faced by a social planner with preferences over streams of con-
sumption, C;, which are summarized by the expected present discounted value of a rep-

resentative agent’s life time utility

0051[“:0

— i (Cr — X))
;5 ?] : (C.1)

where § € (0,1) is the subjective discount factor. We further assume that consumption
is a non-negative choice that cannot fall below a subsistence level, C; > X;, where X,
denotes internal habits in consumption. Following Grishchenko (2010), the household’s

internal habit is defined as .

X, =0y (1-a)*'c,

S

=

Il
=)

or equivalently,
Xt - Bct,1 + (1 - &>Xt71- (CQ)

The parameters @ and b share the same interpretation as in the main text, although a
tilde on top of the parameters indicates that their value might not be the same due to
the discrete-time nature of the problem. Note that once again the household preferences
collapse to the standard time-separable case if Xy = b=0.

The aggregate output of the economy is produced using the Cobb-Douglas technology
Y; = exp (A;) KL, ™, (C.3)

where K; is the aggregate capital stock, and L; is the perfectly inelastic labor supply

(normalized to one V¢ > 0). The former accumulates according to

1,
Ky = (ﬁ) K+ (1-0) K, Ky>0, (C.4)

t



where

a I, 1-1/¢
v/m) = () te (©5)

represents adjustment costs of adjusting capital. On the other hand, total factor produc-
tivity (TFP), A, is assumed to follow the AR(1) process

At+1 = ﬁAAt + 5A€A,t+1 AO > 0, (C6)

where p4 € (0,1) measures the degree of persistence of technology, 64 > 0 its volatility,
and €4, ~ N(0,1) is a productivity shock. Finally, the economy satisfies the aggregate
resource constraint

The problem faced by the social planner is that of choosing the time path for con-
sumption that maximizes (C.1) subject to the dynamic constraints (C.2),(C.4), and (C.6),
and the static constraints (C.3), (C.5), and (C.7):

V (Ko, Ay, Xo) = Uy st. (C2)—(C7 C.8

(Ko, Ao, Xo) {Ct2g2§+}fig o S (C.2) = (C.7), (C.8)

in which C; > X, € R" denotes the control variable at time ¢ € Z, and 170 = ‘7([(0, Xo, Ao)
the value of the optimal plan (value function) from the perspective of time ¢ = 0. For any

t €{0,1,2,...}, a necessary condition for optimality is given by the Bellman equation

V(K;, Ay, X,) =  max w+mﬂ/(z{ A1, Xigr) (C.9)
ty 4ty At) — Ci>X, R+ 1— ~ t t+1, “4+1s At+1 .
subject to
ANKY — C,
Kt+1 _ ¢) (eXp( t)[(' t t) Kt + (1 . 5) Kt
t

X = 0C,+(1-a) X,

A1 = padr +0acaiqr.

The first order condition for an interior solution is

eXp<At)Kta -Gy
K,

(Cy — Xy) 77 + bOE, [Vx,tﬂ] =9 ( > BE, |:‘7K,t+1:| ) (C.10)
where ‘7K,t+l = VK(KH—I, Xt+17At+l)> vX,t—i—l = VX(KH-I) Xt+17At+l)> and ‘7A,t+l =
Va(Kii1, Xiy1, Aey1) are the partial derivatives of the value function with respect to each

of the states. Equation (C.10) makes optimal consumption an implicit function of the
state variables, CF = C'(Ky, Ay, Xy).



By means of the Envelope theorem, the costate variable with respect to capital is

defined by

Ve =B (cp' (eXp(At)Kta - Ct) ((a — 1) exp(A) Ko + ﬁ)

K,

ANKy - C, %

e (exp( ) K t) +1— 5) E; |:VK,H-1:| 5
K,

while with respect to the habit by

‘7X,t =—(C,— Xy) "+ (1 —a) pE, [Vx,tﬂ] :

[e.e]

A solution to the planner’s problem is given by the sequence {17;“, 17X7t, K, Xy, At}
t=0
that solves the boundary value problem (with appropriate transversality conditions) char-

acterized by the system of equilibrium stochastic difference equations:

Vie = 8 <<I>’ (eXp(At)Kta - Ot) ((a — 1) exp(A) K" + Ct)

K, K,
+ o <eXp(At1§ta - Ct) vl 5) E, [VK,HI} (C.11)
t
Vi = —(C— X))+ (1—a)BE, [?XM] (C.12)
X = O+ (1-a)X, (C.13)
Kii = ®((exp(A)K® — C)) JK) K, + (1 — 6) K, (C.14)
Avpr = padi +0a€a11 (C.15)

together with initial conditions K(0) = Ky, X(0) = Xy, and A(0) = Ay, and where C}
solves the non-linear algebraic equation in (C.10).

Table C1 gives a summary of the model setup in continuous and discrete time.

C.2 Deterministic steady state

In the absence of uncertainty (64 = 0), the deterministic steady state is defined as
an equilibrium in which all variables in the economy are constant. Hence, given the

assumptions on the capital adjustment cost function in (C.5), the deterministic steady



Continuous-time ‘

Discrete-time

Objective function

Market clearing

Capital dynamics

Habit dynamics

TFP dynamics

TFP shock

E, [ [ e*’)t—(c”ff’;)l_wdt}
exp(A ) KSL' = = Gy + I
dK, = <<I> <{(—) . 5) Kdt

dXt = (th — CLXt) dt

dA; = —paAidt + 04dBa,

(Batsa — Bay) ~ N (0,A)

Eo [ 352, 81O
exp(A) KAL' = Gy + I
Koy = <<I> (é—) (1 5)) K,
X1 =bCyq + X,

App1 = paAs + Ga€a

€At ™ N (Oa ]-)

Table C1. Summary of the two modeling frameworks. The table summarizes the two
modeling frameworks in continuous and discrete time.

state is fully characterized by

A =0
T - [aexp(z)}l‘l“
p+o
C = exp(AK" - 6K
X - ¢
a
= 1~ —
BVx = p+a(0 X)
== b -
e 1— —

Vi ( p+a> ©

(C.16)

(C.17)

(C.18)
(C.19)

(C.20)

X) 7, (C.21)

where V x and ‘7;( denote the deterministic steady-state values of the costate variables

for the capital stock and the habit formation in the discrete-time economy. By setting

B=1/(1+p), and b = b and @ = a, we ensure that the steady state values of the

capital stock and the long-run habit-to-consumption ratio are equal in the discrete- and

continuous-time models.

C.3 Perturbation method

The equilibrium conditions of the model are summarized by equations (C.11)—(C.15).

As in the continuous-time case, the policy functions that solve these conditions are not

available in closed form and therefore will be approximated using perturbation methods.



As before, let the augmented stochastic process for the TFP be given by

Apr1 = paAs + 10 s€4441,

where 7 is the perturbation parameter that controls the standard deviation of TFP shocks
(not the variance as in the continuous-time model).
Following Schmitt-Grohe and Uribe (2004), the equilibrium conditions can be com-

pactly written as
E¢ [H(ytr1, yi, Xer1, %45 m)] = 0, (C.22)

where x; = [K;, Xy, A¢]" is the vector of state variables at time ¢, with initial value x¢ > 0,
Yy = [‘A/J'Kt, ‘7X,t, ‘7,“, Ct} ! is the vector of control variables at time ¢, and H is an operator
that collects the equilibrium conditions (C.11)—(C.15). The deterministic steady state is
then defined as the pair (¥,X) that solves

H(y.y,%,%0) = 0. (C:23)
The solution to the discrete-time model in (C.22) takes the form

ye = g(xun) (C.24)
Xer1 = h(xe;n) +n6a€ars, (C.25)

where g (+) is a vector of unknown policy functions that maps every possible value of x;
into y;, and h (-) is a vector of unknown policy functions that maps every possible value
of x; into x;;1. Substituting into the functional operator that defines the equilibrium

delivers the new operator

F(xi;n) = B [H (g(h(xe;m) + n0a€ai1;n), 8(xen), h(xe;n) + noaeaii1, xin)] = 0.
(C.26)
A perturbation-based approximation to the solution of problem (C.22) builds a Taylor
series expansion of the unknown policy functions around the deterministic steady state
using the fact that (C.26) holds for any values of x;, and 1. An immediate consequence of
the latter is that all the partial derivatives of the functional F'(x;;n) must be zero, i.e.,

Fkn]'(xt;n) :Ou vx7n7i7kaj)

Zi

where Fk,;(xs; 1) denotes the derivative of F' with respect to the i-th element in x; taken

)

k times, and with respect to n taken j times evaluated at (x;;7).



A first-order approximation to the policy functions is given by

g(xi;m) = g(X%0)+8x(X0)(x; — X) +g,(X0)n
h(x; ) h(X;0) + hy(X; 0)(x¢ — X) + h, (X; 0)7,

Q

where g(X;0) and h(X;0) correspond to the deterministic steady-state values of the con-
trol and state variables derived from (C.23), and where the constants g (X;0), hy(X;0),

g,(X;0), h,(X;0) can be determined by solving the system of equations formed by

F.(x.0) = 0, Vi
F,(x;0) = 0.

We refer to the first set of equations (those not involving the perturbation parameter) as
the perfect-foresight component of the approximation, and to the second set of equations
as the stochastic component of the approximation (cf. Andreasen and Kronborg, 2018).

The system of equations resulting from the perfect-foresight component is quadratic
in the unknowns gy (X;0) and hy(X; 0). We pick the solution that ensures stability of the
model’s endogenous variables, i.e., the stable manifold (e.g., Blanchard and Kahn, 1980;
Klein, 2000). The remaining constants, g,(X;0) and h,(X;0), correspond to the solution
of the system of equations formed by the stochastic component, the unique solution being
g,(X;0) = h,(X;0) = 0 (cf. Fernandez-Villaverde et al., 2016). Hence

g(xim) ~ g(X%0)+ gx(X0)(x; — %) (C.27)
h(x;1) =~ h(X;0) + hy(X;0)(x; — X), (C.28)

implying that up to a first order, the approximation exhibits certainty equivalence, i.e.,
the solution of the model is identical to the solution of the same model in the absence of
uncertainty, n = 0.

Similarly, a second-order approximation to the policy functions is given by

g(x;m) ~ g(X;0) + gx(X;0)(x; — X) + g,(X;0)n
+ 38xx(X; 0) (%) — X) @ (%4 — X) + 85y (X: 0)(x¢ — X) @ ) + 38 (X; 0)?

and

h(x;;n) ~ h(X;0) + hy(X; 0)(x; — X) + hy, (X;0)n
+ 31 (X5 0) (%, = X) @ (% = X) + hyy (%: 0) (3, — %) @ 1 + by (X5 0)77%,

where the definition of the matrices gxx(X;0), hxx(X;0), g,,(X;0), and h,,(X;0) can be



found in Binning (2013). These unknown coefficients correspond to the solution of the

system of equations formed by

Fro;(X;0) = 0 Vi,j,
Fp(x:0) = 0.

As shown in Schmitt-Grohe and Uribe (2004), the cross derivatives gy, and hy, evaluated

at (X;0) are zero, and hence the second-order perturbation reduces to
g(xi; 1) ~ (X 0) + 8x(X: 0) (x; — X) + 58xx(% 0) (% — %) ® (%, — X) + 38,(%;0) (C.29)

h(x;;n) ~ h(X;0) 4+ hy(X; 0) (x; —X) + $hyx (X5 0) (%, — %) ® (x¢ — X) + £h,, (X3 0). (C.30)

Hence, solving a second-order approximation introduces a constant correction in the
policy functions that account for the effects of risk given by g,,(X; 0) and h,, (X;0), while
the slopes of the policy functions are not affected by risk as gx,(X;0) = hy,(X;0) = 0.

C.4 Calibration

For the numerical exercises presented in the paper we calibrate the discrete-time model
as in the continuous-time case. In particular, we set the risk aversion parameter and the
share of capital income to v = 2 and a = 0.36, respectively. The annual values for the
subjective discount rate and the depreciation rate are fixed to 5 = 1/(1 4 p) = 0.9606
and 6 = 0.0963, respectively. For the habit process we use a = 1 and b = 0.82, while
the adjustment cost parameter is calibrated to & = 0.3261. Finally, following Christensen
et al. (2016), the annual values for the persistence and volatility of the TFP are set to
pa = 0.8145 and 04 = 0.0278, respectively.

C.5 Risky steady state

Following de Groot (2013), it is possible to approximate the risky steady state of a
discrete-time economy by making use of the second-order approximation around the de-
terministic steady state. First, consider the second-order approximation to the transition

equation for the state variables in (C.30)
xe11 = h(X; 0) + hye (X 0) (x¢ — X) + 2 hyx(X; 0) (% — X) @ (x¢ — X) + 30, (X50) + Gacapsr.

By setting the random disturbances to zero, €4,+1 = 0, we compute the risky steady-state

value of the state variables as the vector x that satisfies x;;; = x; = X, and thus that



solves the quadratic equation
X =X+ hy(X;0) (X — X) + 3hux(X;0) (X — X) ® (X — X) + 3h,,(X; 0).

Once x is computed, it is possible to back out the implied risky steady-state value for

the control variables, y, by simply inserting x into (C.29)
S’ = y + gx(i; 0)(& - i) + %gxx(i; 0)(& - i) ® (X - i) + %gnn(i; O)

The corresponding risky steady state values for habit, capital stock, and consumption
resulting from the calibration in Section C.4 are X = 1.0608, K = 4.7184, and C' =
1.2936, respectively.



D Policy and Impulse-Response functions

For comparison purposes, this appendix reports the policy and impulse-response functions
obtained from the discrete-time model in Appendix C. They are computed using the
software platform dynare.

Figure D1 compares approximated policy functions for consumption across orders of
approximation; on the left-hand side (LHS) for the continuous-time case and on the right-
hand side (RHS) for the discrete-time case. Note that our calibration implies identical
deterministic steady states across time assumptions. The policy function for consumption
approximated by means of a first-order perturbation in the discrete-time model (solid line
on the RHS) goes through the deterministic steady state (approximation point) which
suggests that the approximation is certainty equivalent. In contrast, the First-Order
approximation of the policy function in the continuous-time model (solid line on the LHS)
does not go through the deterministic steady state (approximation point) indicating that
it is not certainty equivalent. Only by shutting down the risk-correction, g, (X;0) = 0,
the continuous-time model First-Order CE approximation (dotted line on the LHS) will
go through the deterministic steady state. Hence, as claimed in the main text, the First-
Order CE resembles the first-order approximation in discrete time. Further note that in
continuous time the First-Order delivers an approximation that is close to that provided
by the Second-Order approximation (dashed line on the LHS) in the neighborhood of the

deterministic steady state. The same does not occur in discrete time.

Continuous-Time Discrete-Time
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Figure D1. Continuous- and discrete-time approximated policy functions: First- and
second-order approximations of the policy function for consumption around the deterministic
steady state along the capital lattice while keeping habit and productivity at their deterministic
steady-state values, C (K X, Z). A circle denotes the deterministic steady state, a star denotes
the first-order approximation and a square the second-order approximation of the risky steady
state.
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Figure D2 plots the approximated IRFs for consumption to a one standard deviation'
shock in TFP across orders of approximation: on the LHS the continuous-time case and
on the RHS the discrete-time case. As the first-order approximation in discrete time (solid
line on the RHS) is certainty equivalent, the corresponding IRF starts in the deterministic
steady state, where it also converges to. Comparing this IRF to the IRF from the First-
Order CE in continuous time (dotted line on the LHS), one concludes that they are
similar. Further, note that on the RHS we observe a large difference between first- and
second-order approximated IRFs (solid vs. dashed line), since in the discrete time case
only a second-order approximation provides risk-correction. In contrast, the differences
between the IRFs resulting from the First- and Second-Order approximation (solid vs.
dashed line on the LHS) are minor in the continuous time case, which reflects the fact
that both approximations of the policy function are similar in the neighborhood of the
deterministic steady state (see Figure D1). All these considerations suggest that the
main weakness of the first-order approximation in discrete time is not that it is linear,
but rather that it is certainty equivalent. Therefore, the continuous-time First-Order
approximation is especially useful in situations in which risk matters but nonlinearities

are negligible.

Continuous Time Discrete Time
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Figure D2. Impulse-Response function to a one s.d. shock in TFP (Discrete-time
model): It plots the impulse response functions (IRFs) for the levels of aggregate consumption,
capital, and habit when time is discrete. The variables in the economy are assumed to be in their
corresponding risky steady states before the shock hits. A circle denotes the deterministic steady
state, a star denotes the first-order approximation and a square the second-order approximation
of the risky steady state.

!'More precisely, for ease of comparison, we impose in both time assumptions an impulse of one
standard deviation of the continuous-time model, i.e. o4 = 0.0307.
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E Pricing errors

Figure E1 reports the percentage (absolute) pricing errors for different approximations
under the assumption that the true data generating process is given by the global ap-
proximation to the nonlinear stochastic model. The First-Order (CE), First-Order and

Second-Order have been already introduced in Figure 3 in the main text.
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Figure E1. Decomposition of pricing errors: The graph plots the pricing errors resulting
from First-Order (CE), First-Order, Nonlinear (CE), Second-Order, and the difference between
the first two assuming that the true data generating process is the nonlinear stochastic solution.

Recall that the pricing error generated by the First-Order (CE) can be decomposed
into: (i) the error stemming from the linearization of the nonlinear and stochastic policy
function, which is captured by the First-Order approximation, and (ii) the error stemming
from the imposition of certainty equivalence in the linear world. The latter is captured
by the difference between First-Order (CE) and First-Order, and it is represented by
the black line with diamonds: it measures the fraction of the pricing error that can be
attributed to the imposition of certainty equivalence when using the First-Order (CE)
solution. This measure can alternatively be interpreted as the reduction in the pricing
errors that will be induced by the use of the (risk-sensitive) First-Order approximation.

Figure E1 presents an additional breakdown of the pricing errors generated by the
use of the First-Order (CE). In particular, it is possible to decompose this error into:

(i) the error stemming from imposing certainty equivalence in the nonlinear world, and
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(ii) the error stemming from linearization in the presence of certainty equivalence. The
former is given by the approximation of the policy function using a global method in a
deterministic environment (Nonlinear CE, blue line with circles), while the latter would
be given by the difference between the Nonlinear CE and the First-Order (CE).

By comparing the black line with diamonds and the blue line with circles, we can
infer the effects from imposing certainty equivalence on the quality of the approximation.
The first one provides a measure of this error in the linearized world, while the second
one does it in the nonlinear world. The results suggest that the error reduction one
would obtain from using the First-Order approximation is very close to the error one
makes when imposing certainty equivalence in the nonlinear global solution. This can be
interpreted as our First-Order approximation removing all of the error stemming from
certainty equivalence such that all the remaining error can be attributed to linearization
and, thus, is inevitable. Therefore, the First-Order approximation in continuous time

makes it possible to account for the effects of risk in a linear framework.
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