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Abstract 
This paper proposes a new method to estimate synthetic control weights. We derive the true 
predictor weights from a standard factor model for potential outputs and show that these can be 
consistently estimated by OLS or maximum likelihood methods. We focus on post-treatment 
data and use pre-treatment data solely as predictors. Optimal synthetic control weights are 
defined as minimizing the post-treatment mean squared synthetic control error. These weights 
can be found easily by solving a simple quadratic minimization problem. We compare this to 
the complex standard optimistic bilevel minimization problem and show that the latter may 
suffer from lack of identification and inconsistencies in the usage of pre-treatment outcomes or 
other endogenous variables as predictors.   
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I. Introduction  

Synthetic control methods (SCM) have attracted much interest in recent years and have been 
used in countless empirical applications. The attractiveness of the method is rooted in its 
potential to estimate causal effects of policy interventions or other well-defined events. In the 
words of Athey and Imbens (2017), synthetic control methods are „arguably the most important 
innovation in the policy evaluation literature in the last 15 years.” 
 
Most papers rely on methodological foundations due to Abadie et al. (2010, henceforth ADH). 
Their approach envolves solving an optimistic bilevel minimization problem in order to 
determine the optimal weights for the construction of synthetic controls. This type of problem 
is mathematically complex and a number of unwelcome issues (which initially went unnoticed), 
have been detected and discussed in the more recent literature. While all of these issues are 
rooted in the mathematical structure of the bilevel minimization problem, they can broadly be 
classified as numerical, statistical or economic. 
 
Numerically, a number of authors have reported that the commonly used Synth-algorithm 
proposed by ADH is unstable and may not converge to the global minimum of the objective 
function, cf. Becker and Klößner (2017), Becker et al. (2018) and Klößner et al. (2018). Malo 
et al. (2020) developed a competing algorithm which seems to solve most of these problems. 
Statistically, Ferman and Pinto (2016) noted that the ADH-estimator is asymptotically biased 
under plausible assumptions and suggest improved estimators. A broader range of alternative 
models and estimators is considered by e. g. Chernozhukov et al. (2020).  
 
Economically, the ADH-method has been a source of concern because covariates which are 
believed to have predictive power for the outcomes of interest, have empirically been found to 
have very little (or even zero) impact on the construction of the synthetic controls (SC). For 
instance, Kaul et al. (2015) showed that covariates always receive zero weight when they 
compete with all pre-treatment outcomes - irrespective of the predictive power of the covariates. 
This is a trivial consequence of the mathematical structure of the bilevel problem. But even if 
– informationally inefficient - only a subset of the pre-treatment outcomes is used in the bilevel 
problem, several researchers have noted that the influence of covariates on the constructed 
synthetic control is usually surprisingly small.  
 
How strongly predictors affect the choice of SC-weights depends on a different set of weights 
which we call the predictor weights. These predictor weights enter the bilevel problem in the 
form of a diagonal weighting matrix, commonly denoted V. As no a priori knowledge on V 
exists, V is usually data-determined. In fact, it is the determination of V which leads to the 
protracted mathematical structure of an (optimistic) bilevel minimization problem.  
 
In this paper, we first discuss some problems related to the estimation of V in the standard 
approach. We do so in the common factors model widely used in the literature, e. g. in ADH 
(2010), Ferman and Pinto (2016) and Chernozhukov et al. (2020). We show that V may not be 
identified under standard assumptions. We then argue that the currently used methods to 
determine V suffer from misspecification because V is estimated from an objective function 
which minimizes the sum of squared pre-treatment synthetic control errors. But the aim of the 
SC-method is to choose weights such that the best fit between the post-treatment synthetic 
control and the potential outcome for the treated region under counterfactual non-treatment is 
found.  
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Under the assumption that treatment is, conditional on predictors, as good as randomly 
assigned, we derive the optimal predictor weights (analogous to V) from the factor model and 
then show that standard methods yield consistent estimators for these weights. Both the cross 
section and the time series dimension are required to approach infinity, but they can do so on 
arbitrary paths (simultaneous limit) and some of our results also hold for fixed T. Although the 
factor loadings of the idiosyncratic shocks cannot be consistently estimated, we show that the 
optimal SC-weights (i. e. the weights which minimize the post-treatment mean squared 
synthetic control error) can be found by solving a standard quadratic problem rather than a 
bilevel problem.  
 
The rest of the paper is organized as follows. In section II we present the standard factor model 
for potential outcomes and discuss identification and restrictions on covariates. In section III 
we critically review the widely used ADH approach and argue that it is unlikely to yield reliable 
estimates of the optimal synthetic control weights. In section IV we propose a new method to 
to derive consistent estimates of these weights. We show that this can be achieved by standard 
methods. Section V concludes. 
 
 
 
II. The Model  
 
Suppose we observe a balanced panel of 1J   units over 0 1T T T   periods of time. Unit 1 has 
been randomly assigned to a policy intervention (the treatment) from period 0 1T   onward. The 
policy has no impact on units 2,..., 1J   and no impact on unit 1 prior to period 0 1T  . We are 
interested in the effect the treatment has had on a specific cardinal variable y, which we call the 
outcome. The observed outcome for region i in period t is denoted ity  and is either the outcome 
under treatment or under non-treatment, whatever applies.  
 
We assume that for each unit i and period 0t T  the potential outcome in the case of non-
treatment can be expressed as a linear function of R-dimensional, random vector iz  of 
observables and of an F-dimensional random vector t  of unobservable shocks. The 
observable, unit-specific variables iz  have deterministic, but time-variant coefficients 

0, 1,...,R
t t T T    , and the unobservable time-variant shocks have deterministic, but unit-

specific loading coefficients , 1,..., 1F
i i J    : 

 
 ' 'N

it i t t iy z      (1) 
 
Here the superscript N indicates that N

ity  is the potential outcome in the case of non-
intervention. We assume that there are C common factors and 1J   idiosyncratic shocks, i. e. 

1F C J   . We sometimes use the partition  ' ' 'C I
t t t    where C

t  contains the 

common factors and I
t  contains the idiosyncratic shocks. We partition  ' ' 'C I

i i i    

accordingly. A shock is idiosyncratic for unit i iff i  is nonzero only in row C i  and all other 

j ‘s are zero in this row. 
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The observable variables iz  are called the predictors. Note that the predictors may contain a 
constant term 1 1 1,..., 1iz i J    , and that we may, therefore, assume   0tE t    without 
loss of generality. Further, iz  is assumed to involve only variables unaffected by the policy 
intervention, i. e. either variables which are strictly exogenous or variables which have been 
determined prior to treatment. For instance, in a macroeconomic application where outcomes 
are measures of GDP, iz  may involve endogenous variables like investment, human capital, 
infrastructure etc., provided these variables were determined not later than period 0T . 
 
Note that the right-hand side of (1) involves three unobservables, ,t t   and i Many 
observationally equivalent choices for these unobservables exist. To see this, let 1G  be any 
nonzero R F  matrix and let 2G  be any nonsingular F F  matrix. Then for any given ,t t   
and i it is easy to find an observationally equivalent representation with, in general, different 

unobservables ,t t    and i  
 



 
 

  

1 1

1 1

1

1
2 2

' ' ' '

' ' '

: ' ' '

: ' '

' '

: ' '

N
it i t t i i t t t i t

R F

i t t i t i t

i t i i t

i t i t

i t i t
F F

i t i t

y z z G G

z G z G

z z G

z

z G G

z

       

    

  

  

  

  







 
       

 
   

  

 

 
    

 
 



 

 

 

 

 
Here,  2 1: ' 'i i iG G z    depends on the predictors. Hence, 'i t   will, in general, correlate 

with iz . In order to uniquely identify t  and : 'it i t    in (1) we therefore impose the 
identifying assumption 
 
A0: Orthogonality condition 
For all 0t T  and all 1,...,i J  we have   0i it RE z  . 
 
Note that for the purpose of this paper we are not interested in identifying a „true“ shock t  or 
a „true“ unit-specific shock it . This would require a structural analysis and specific, probably 
controversial identifying assumptions. But since we do not aim at an economic interpretation 
of the shocks, any identification will do. We just need to ensure that the shocks we work with 
are indeed uniquely identified.  
 
The most convenient identification for t  is achieved by assumption A0, provided  'i iE z z  is 
non-singular i . This can be seen by premultiplying (1) by iz  
 
 'N

i it i i t i itz y z z z   , 



5 

 
taking expectations and solving for t : 
 
    1' N

t i i it iE z z E y z   
 
This implies that t  can be consistently estimated by least squares – a fact we will use below. 
 
Note that predictors may contain endogenous variables determined in period 0T  or earlier. 
Hence, an identifying assumption analogous to A0 is not possible for periods 01,...,T  since 
endogenous predictors would typically depend on some of the unobserved shocks.  
 
This is important because in many models outcomes of period t can be written as functions of 
variables which were determined in the current or a previous period. However, (1) does not 
provide for any right-hand side observable variable dated 0 1T   or later. It is useful to think of 
(1) as representing a dynamic model which has been solved backwards in time until all 
observable variables werde determined in period 0T  or earlier. Therefore, t  must be time-
dependent since it depends on the time difference 0t T , while iz  describes initial conditions 
prior to treatment. 
 
The initial conditions joint with unobservable shocks in subsequent periods eventually give rise 
to N

ity . Needless to say, the effects of such unobservable shocks accumulate in a complicated 
way over time. Their cumulative effect is expressed in the t -vector, which is, therefore, very 
likely autocorrelated and whose variance probably increases over time. 
 
We have defined (1) only for 0t T . Extending (1) to hold for 01 t T   would require that all 
predictors are known already in the initial period 1. This would greatly limit the predictive 
power of iz  for the treatment period if the time span 0T  prior to treatment is substantial. 
 
On the other hand, if (1) is defined only for 0t T , predictors may involve functions of pre-
treatment outcomes 0,isy s T . In this case the number of pre-treatment outcomes used for the 
construction of synthetic controls is held fixed and is not increased when asymptotic arguments 
are invoked.  
 
The potential outcomes in the case of treatment are denoted Tr

ity  and modeled as the potential 
outcome in the case of non-treatment plus a treatment effect it  which is unit and time specific: 
 
 Tr N

it it ity y   (2) 
 
Since N

ity  is, by definition, independent of treatment, it follows directly that it  is uncorrelated 
with the random variables iz  and t .   
 
Denoting the treatment status of unit i in period t by itd , where 1itd   in the case of treatment 
and 0itd   otherwise, observed outcomes are  
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  1Tr N

it it it it ity d y d y    (3) 
 
The primary object of causal analysis is knowledge of 1t  for 0t T  or of its average over the 

treatment period 
0

1
1 1 11
: T

tt T
T 

 
  . More generally, knowledge of any treatment effect it  

may be desired. Since either Tr
ity  or N

ity  is unobserved for unit i in period t, the key question is 
how observations on ,it ity d  and iz  can be used to estimate the unobserved components of (2) 
as well as possible.  
 
For the following, let us introduce the following notation: Collect all covariates of the control 
regions in the R J  matrix  0 2 1: ... JZ z z   and collect all factor loadings of the control 

regions in the F J  matrix  0 2 1: ... JM    . Denote by  0 1: 'post
T T     the 

1T R  matrix of time-dependent coefficients for the covariates and by  0 1: 'post
T T     

the 1T F  random matrix of shocks. Moreover, let  0 1: ... ' 1,..., 1post
i iT iTy y y i J     

and collect all observations for the controls in the post-treatment period in the 1T J  matrix  

 0 2 1: ...post post post
JY y y  . Finally, define pre

iy  and 0
preY  analogously for the pre-treatment 

periods 01,...,T . 
 
Using (3) we can then rewrite (1) with observable variables on the left hand side. For the J 
control units, we have  
 
 0 0 0

post post postY Z M   (4) 
 
while for the treated unit 1 (1), (2) and (3) yield  
 
 1 1 1 1

post post posty z     (5) 
 
where  01 1 1 1: 'T T     is the parameter of interest. 
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III. The Standard SC-Approach  

 
The standard synthetic control approach has been popularized by Abadie and Gardeazabal 
(2003) and Abadie, Diamond and Hainmueller (ADH) (2010). The key idea is that 1 0,N

ty t T , 
the potential output of unit 1 in the counterfactual case of non-treatment, can be approximated 
by a weighted average of the observed contemporaneous outcomes of the control units. 
Formally, if  0

,
1 1 1 1: 'N post N N

T Ty y y  , the ADH approach aims at finding a suitable 

nonnegative vector of weights  * : ' 1 0 1,...,J
J J iw w w w i J         such that  

 
 , *

1 0
N post posty Y w  (6) 

 
Here, J  is a vector 1J   vector of ones. 
 
To find the desired weights *w , ADH’s approach relies on the predictors 1 0,z Z  and on all pre-
treatment outcomes 1 0,pre prey Y , where the predictors may also include functions of some or all 
of the pre-treatment outcomes. Since not all predictors may be equally informative for potential 
outputs, let Rv  be a vector of non-negative predictor weights and let : diag( )V v  be the 
corresponding diagonal R R  matrix.  
 
ADH propose to solve the following optimistic bilevel minimization problem: 
 

      1 0 1 0,
0

1min , : '
R J

pre pre pre pre
outv w

L v w y Y w y Y w
T 

    (7) 

s. t.  

 
       

 

1 0 1 0: argmin , : '

diag
J

in
w

w v L v w z Z w V z Z w

V v


    


 

 
This formulation is due to Malo et al. (2020). For a given V we call  
 
      1 0 1 0min , '

J
inw

L v w z Z w V z Z w


    (8) 

 
the inner minimization problem and  
 

 
 

     1 0 1 0,
0

1min , '
R

pre pre pre pre
outv w v

L v w y Y w y Y w
T 

    (9) 

 
the outer maximization problem. Note that the outer problem requires w to be from  v .  
 



8 

Define  1 1 0:Z
Jw z Z w    ,  1 1 0:

preY pre pre
Jw y Y w     and, for later purposes, 

 1 1 0:M
Jw M w    2. ADH assume the existence of weights  0

1 1
preZ Yw    , i. e. 

there exist weights 0w  such that linear combinations of the columns of 0Z  can exactly 
reproduce 1z  and the same linear combinations of columns of 0

preY  can exactly reproduce 1
prey

. ADH show that under this (and some additional) assumptions 0
0
postY w  is an asymptotically 

unbiased estimator of ,
1
N posty  when the number of pre-treatment observations 0T  approaches 

infinity.3 
 
Unfortunately, the ADH approach is problematic in multiple regards: 
 
1. If t  contains at least one idiosyncratic shock which affects the treated unit, then, 

asymptotically, 1

preY   with probability 1. This was noticed by Ferman and Pinto 
(2016). Since this idiosyncratic shock would be independent of the shocks hitting the control 
units, no linear combination of control units can exactly reproduce the pre-treatment time 
series of the treated unit for 0T J . Hence, in this case, there is no reason to believe that 
the ADH-estimator is asymptocially unbiased.    

 
2. The weights solving (7) are, in general, not unique. Define  1 1 1: ' ' 'prex y z , 

 0 0 0: ' ' 'preX Y Z . Then the solution set 1 1 1:
preX Z Y    can be written as 

  0
1 ,X J

Jw w w I X X         , where X   is the Moore-Penrose inverse of 

X. It is easy to show that 1
X  is a convex subset of J . There are, in general, many 

admissible choices of  , in which case 1
X  has infinitely many elements. Only in very 

special cases would the solution 0w  be unique.  
 
3. V is not identified at the optimum: 1

Z  is non-empty by assumption, hence we have 

1 0z Z w  and  , 0inL v w   for any matrix  diagV v  and any 1
Xw . Since, as 

acknowledged by ADH, in practice one may not achieve more than approximate equality 
1 0z Z w , V will be nearly unidentified close to the optimum and, therefore, estimates of V 

may be numerically unstable. This is particularly troubling since 1
X  is, in general, a non-

degenerate convex set, so that, loosely speaking, 1
Xw  is not identified either. Therefore, 

estimates of both V and w may be numerically unstable and the instability of the former may 
reinforce the instability of the latter and vice versa.  

 
4. Suboptimal weights w are chosen if all pre-treatment outcomes are included in the 

matrix of predictors: This result is due to Kaul et al. (2015). Suppose that  1 1 1: ' ' 'prez y z 

                                                
2 This definition is meaningful only if (1) holds also for the preintervention periods – which ADH assume. As we 
have pointed out, this requires that predictors are determined in period 1 or earlier. We do not know how ADH 
justify their usage of preintervention outcomes as predictors.  
3 Some papers (e. g. Malo et al. (2020)) state that ADH prove the „consistency“ of the SC-estimator. This is not 
true. Their proof shows asymptotic unbiasedness. ADH do not claim that the variance of , *

1 0
N post posty Y w  

converges to zero.  
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,  0 0 0: ' ' 'preZ Y Z   where 1 0,z Z  collect all predictors different from 1 0,pre prey Y , 

respectively. Then, a solution to the bilevel problem (7) is given by any 1

preYw  along with 

 0

1
0 ' 0 ' 'T Rv T  , i. e. with a V-matrix which has equal nonzero elements for the 0T  pre-

treatment outcomes on the main diagonal and is zero everywhere else. In words: The choice 
of weights is solely driven by the pre-treatment outcomes and all other predictors have no 
impact at all. 

 
This is suboptimal for causal inference as can be seen by the following example. Suppose 
there are two control units, i. e. 2J  , and two periods, 0T  and T. Treatment occurs in T.  
Moreover, assume that potential outcomes in the non-treatment case are generated by 
 
 N

it i ity z i t     (10) 
 
where it  is idiosyncratic (i.i.d.) white noise with variance 2

 . Let 1 2 32, 0, 3z z z      and 
assume that pre-treatment shocks are 

0 0 01 2 32, 1, 3T T T       . Hence, the pre-treatment 
potential outcomes are 

0 0 01 1 2 2 3 30, 1, 6N pre N pre N pre
T T Ty y y y y y       . 

 
Minimizing    1 0 1 0'pre pre pre prey Y w y Y w   s. t. 2w  is equivalent to solving 

 1 1 2 1 31pre pre prey w y w y   . Hence    1 1 3 2 3 6 / 7pre pre pre prew y y y y    , i. e. the solution 

is    1 2 2' 6 / 7 1/ 7 'w w w   . It is easy to see that this along with  1 0 'v   
solves the bilevel problem (7).  
 
However, the weights minimizing the mean squared error in the treatment period would be 
the solution of  
 
       

1
1 1 2 1 3 1 1 2 1 30 1

min 1 ' 1N N N N N N
T T T T T Tw

E y w y w y y w y w y
 

     


     (11) 

 
Since 
 

      1 1 2 1 3 1 1 1 2 2 1 3 31 1N N N
T T T T T Ty w y w y z w z w z                  

 
the minimand in (11) is 
 

             
         

1 1 1 2 2 1 3 3 1 1 1 2 2 1 3 3

22 2 2 2
1 1 1 1 2 1 1 3 1 1 2 3 1 2 2 1 3 3

2
1 1 1 3 3 3 1 1 3 1

1 ' 1

' 2 ' 2 1 ' 2 1 ' ' 1 '

' 2 2 ' ' 2 ' '

T T T T T TE z w z w z z w z w z

z z w z z w z z w w z z w z z w z z

z z z z z z w z z z

  



     

  



           

           

     

        

                

           2 2 2
2 2 3 3 3 1 2 2 2 3 3 3' ' ' 2 ' ' 2z z z z z w z z z z z z                  

 
and, therefore, the solution to (11) is 
 

 
2

1 3 1 2 2 3 3 3
1 2

2 2 2 3 3 3

' ' ' '
' 2 ' ' 2

z z z z z z z zw
z z z z z z








   
 

  
       
     
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provided the denominator is nonzero and 10 1w  . In our example this is easily verified 
to be the case:  
 

 
2 2 2

1 3 1 2 2 3 3 3
1 2 2 2

2 2 2 3 3 3

' ' ' ' 6 9 3 1
' 2 ' ' 2 9 2 9 2

z z z z z z z zw
z z z z z z

  

  

  
  

      
     

    
       
     

 

 
If, e. g., 2 3  , then the MSE-optimal solution is    2 / 5 3 / 5 ' 6 / 7 1/ 7 'w   . Note 

that the implied bias of the ADH-solution  6 / 7 1/ 7 'w   is  
 

  0 1 2 3 1
6 1 11
7 7 7

post postE Y w y z z z        , 

 
while the bias of the MSE-optimal solution  2 / 5 3 / 5 'w   is much smaller in absolute 
value: 

 

  0 1 2 3 1
2 3 1
5 5 5

post postE Y w y z z z          

 
In this example, the main point to see is that the MSE-optimal weights depend on 1z  and 0Z
. But if all pre-treatment outcomes are used as predictors, then the ADH-approach determines 
weights which are completely independent of 1z  and 0Z : They depend solely on the pre-
treatment outcomes. The reason is that the pre-treatment outcomes are – trivially - a 
sufficient statistic for the pre-treatment outcomes in the outer minimization problem (9). But 
they are not a sufficient statistic for the post-treatment outcomes we are interested in. For 
these, the predictors 1z , 0Z  contain important information which helps to reduce the 
confounding effects of idiosyncratic shocks in the pre-treatment period – and which should 
not be discarded. 
 
In other words: The bilevel minimization problem (7) determines the „wrong“ V-matrix.  

 
5. No endogenous variables allowed as predictors: One might suspect that the problem of 

insufficient predictor weights for 1z , 0Z  is not confined to the case where all pre-treatment 
outcomes are used as predictors. If 0T  is large and all but a few pre-treatment outcomes are 
in the predictor matrix it is likely, that the V-matrix will still assign most of the weight to the 
pre-treatment outcomes in the predictor matrix and only very little to all other predictors. 
The distortion is probably the less severe, the fewer pre-treatment outcomes (relative to all 
pre-treatment outcomes in the outer minimization problem) are used as predictors. But there 
is little merit in studying this in more detail, because under plausible settings there is a more 
fundamental problem which disallows the use of endogenous variables as predictors in 
ADH’s approach altogether. 

 
To see this, suppose that potential outputs are autocorrelated. This is quite a natural 
assumption since pre-treatment outcomes would have no value as predictors if potential 
outcomes were uncorrelated over time. With autocorrelation, however, pre-treatment 
outcomes (and other variables dated 0T  and earlier) can serve as initial conditions in a 
dynamically evolving system. Since errors add up over time, estimation of treatment effects 
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should condition on initial conditions in 0T  or at least not much earlier. But since, according 
to (1), the same predictors must be used for all outcomes irrespective of their timing, the 
dynamic equations for post-treatment outcomes must be solved backward in time, while the 
same equation for pre-treatment outcomes prior to 0T  must be solved forward.  
 
This in itself is not a problem because the resulting equations are merely descriptive – they 
do not need to admit a causal interpretation. However, solving forward necessarily results in 
a representation where pre-treatment outcomes are functions of future shocks. While this can 
still be seen as merely descriptive, such a representation is not in line with the assumed 
model in equation (1). Equation (1) holds uniformly for all periods and requires that period-
t outcomes depend on shocks which are known in period t. Hence, iz  can only accomodate 
predictors which allow a representation as in (1).  
 
To illustrate the issue, consider the following example: Suppose there are four periods, 

0 0 01, , 1T T T   and 0 2T  . Treatment occurs in 0 1T  . Moreover, assume that potential 
outcomes in the non-treatment case are generated by 
 
 1 , 0 1N N

it y it ity y i t         (12) 
 
where it  is idiosyncratic (i.i.d.) white noise with variance 2

 . 
 
For the last period 0 2T  , equation (12) can be written as 
 
  0 0 0 0 0 0 0

2
2 1 2 1 2 2

N N N
iT y iT iT y y iT iT iT y i Ty y y z                   ,  (13) 

 
where 

0
: N

i iTz y  and 
0 0 02 2 1:T iT y iT        is a first order moving average. Clearly, (13) is 

a special case of (1), as is the analogous equation for the preceding treatment period 
 
 

0 0 0 01 1 1:N N
iT y iT iT y i Ty y z          (14) 

 
Here, 

0 1T   is white noise. Moreover, 
0 1 :T y    and 

0

2
2 :T y   . 

 
For period 0 1T  , however, it is impossible to write (12) in a form compatible with (1): 
 
  0 0 0 0 0

1 1
1 1:N N

iT y iT iT T i y iTy y z     
      (15) 

 
Since 

0iT  is white noise, there is no way how this could be written as a shock which is 
determined in period 0 1T  .  
 
Consequently, the model used by ADH, Ferman and Pinto and others does not allow lagged 
endogenous variables in the predictor matrix (unless they predate period 1 rather than period 

0 1T  ). Asymptotic results which let 0T   implicitly assume that only strictly exogenous 
predictors are allowed. This is not a desirable property in models with autocorrelated 
outcomes.  

  



12 

IV. Consistent estimates for synthetic controls weights 

As argued above, a major weakness of the standard ADH-type SC-estimation strategy is the 
weighting matrix V. It is central to the bilevel minimization problem (7), but it is far from clear 
whether a data-driven determination of V from within the bilevel problem results in a reasonable 
estimate. And estimate of what? The first question to be addressed is: Is there something like a 
true, optimal V-matrix and, if so, how is V related to the parameters of the potential outcomes 
model (1)-(3)? 
 
The overarching aim of synthetic control analysis is a good estimate of the counterfactual 

,
1
N posty . For this, let us focus on the synthetic control error   ,

1 1 0: ,post N post post
Jw y Y w w    . 

A standard optimality criterion would be the least-squares criterion, i. e. we may want to 
minimize the mean squared error, defined as the conditional expectation  
 

     1 1 1 0
1

1: 'post post postMSE E w w I
T

   

 
where  0 1 0 0 1 0: , , , ,pre pre postI y Y Y z Z  is the relevant information set.  
 
We have  
 

       
         

       
   

, ,
1 1 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0

' '

'

' ' ' '

2 ' '

post post N post post N post post

post post post post

post post post post

post post

w w y Y w y Y w

z Z w M w z Z w M w

z Z w z Z w M w M w

z Z w M w

 

 

 



  

          

         

    
   
 
i. e. the appropriate problem to solve is  
 

 

    

    

     

1
1 1 0 1 0 1 0

1
1 0 1 0 1 0

1
1 0 1 0 1 0

min ' '

' '

2 ' '

J

post post post

w

post post

post post

MSE z Z w E T I z Z w

M w E T I M w

z Z w E T I M w

 











    

    

    

 (16) 

 
While (16) is quite different from the bilevel problem (7), it is apparent that under ADH’s 
assumption 1 1

preZ Y   , a solution to (7) is also a solution to (16). To see this, note that 

   1 0 1 0 1 0
pre pre pre prey Y w z Z w M w        and, therefore, any 0

1 1

preZ Yw    satisfies 

both 0
1 0z Z w  and 0

1 0M w   with probability one4 . Hence, 0w  solves (16). However, V 

would not be identified. (Note that ADH’s solution set 1 1

preZ Y   can equivalently be written 
in the more lucid form 1 1

Z M   - which is the form we will use in the sequel.) 

                                                
4 0

1 0M w   holds only with probability one because, in principle, we might have that pre  is orthogonal to
0

1 0M w   with 0
1 0M w  . However, this event occurs only with probability zero. 
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Since 0w  solves (16) under ADH’s assumption 1 1

Z M   , it is no surprise that, as ADH 
prove, 0

0
postY w  is a consistent estimator for ,

1
N posty . However, this result hinges crucially on the 

assumption 1 1
Z M   . In fact, under this assumption and provided we know the loading 

coefficients 1 0, M , we might ignore the bilevel problem (7) completely and simply solve the 
linear equations 
 

 0 1

0 1

, J

Z z
w w

M 
   

    
  

 (17) 

 
A solution to (17) would exist by assumption and it would also solve (7) and (16). It would, 
however, have no relation whatsoever to the structural information like post , pre  or the 
moments of the shocks 1 0 1 0, , ,post post pre pre   . (This does not invalidate the solution. It merely 
emphasizes that in the case of 1 1

Z M    the post-treatment controls 0
postY  would be a 

sufficient statistic for this structural interpretation, since 0
0
postY w  would be equal to ,

1
N posty .) 

 
Unfortunately, the ADH assumption 1 1

Z M    is far from innocuous. There is no 
theoretical reason why it should hold and it apparently almost never holds in practice. But if a 
trivial solution 0

1 1
Z Mw    does not exist, we do not know if the solution to (7) gives rise 

to a consistent estimator of ,
1
N posty . Moreover, comparing the bilevel problem (7) to the problem 

associated with minimizing the conditional mean squared error of 1
post , i. e. problem (16), 

suggests that the solutions to these problems may be very different for the following reasons: 
 
1. The ADH-approach requires that a quadratic form of 1 0z Z w  be minimized with respect to 

V, where V is constrained to be a diagonal matrix. The minimand in (16) also contains a 
quadratic form of 1 0z Z w , but with respect to the weighting matrix  1

1 0'post postE T I   , 

which is almost certainly a different and in particular not a diagonal matrix.  
 
2. The ADH-approach requires a quadratic form of 1 0

pre prey Y w  to be minimized. Since 
   1 0 1 0 1 0

pre pre pre prey Y w z Z w M w       , this involves minimizing a quadratic form 

of 1 0M w   with respect to a weighting matrix 1
1 'pre preT    , whereas the minimand in (16) 

defines the analogous quadratic form with respect to  1
1 0'post postE T I   . These weighting 

matrices are, in general, different. 
 
3. Similarly, the ADH-approach involves a mixed term     1

1 0 0 1 0' 'pre prez Z w T M w    . 

The analogous term in the minimand of (16) is     1
1 0 1 0 1 0' 'post postz Z w E T I M w   

. Again, the two weighting matrices are different. For instance, actual shocks pre  from the 
pre-treatment period have an impact on the weights in the ADH-approach, while minimizing 
the MSE in (16) requires weights which rely on conditional expectations of shocks in the 
treatment period. Moreover, there is usually no reason to believe that the  -coefficients are 
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the same in pre- and post-period or that pre  correlates in the same way with actual pre-
treatment shocks as we may post  expect to do with shocks of the treatment period5.    

 
Since it seems reasonable to accept the minimization of the MSE of the synthetic control error 

1
post  as optimality criterion, the above discussion suggests that ADH’s SC-approach suffers 

from a generally misspecified choice of weighting matrices. Only if an exact solution 
0

1 0
pre prey Y w  exists, would this choice not matter and the ADH-solution would asymptotically 

coincide with the solution of (16). But, as Ferman and Pinto (2016) have correctly pointed out, 
the probability for the existence of such a solution is asymptotically zero. 
 
It would, therefore, be desirable to solve (16) directly. This approach has so far been discarded 
in the discipline because the counterfactual potential outcome ,

1
N posty  is unobserved. But if 

consistent estimates of 1, ,post post    and 0M  can be obtained, (16) could be approximated 
arbitrarily well with increasing J or T (or both).  
 
In the following we will explore if such estimates are possible. The result will be negative, 
because it will turn out that there is no way to estimate the idiosyncratic loading coefficients 

1
I  consistently – not even if both J and T become very large. But, as we will show,

0, ,post post CM   and 1
C  can be estimated consistently and this is sufficient to solve (16).  

 
To show this we proceed in three steps. First, suppose that J R  and estimate equation (1) 
for each period 0t T  as a cross section regression over the J control units for which the 
potential outcome in the case of non-treatment is observed: 
 

 

2 2

0
1

1, 1

'
'

'

N
t

t t t t
N R
J t J

J R

y z
Z

y z
   


 



   
         

     

 



 (18) 

 
where : ' 2,..., 1jt t j j J       and  2 1: 't t J t     . The error terms jt  are linear 

combinations of the t ‘s, some of which are common factors, and, hence, the covariance matrix 

of t  will not be diagonal, i. e. we will have non-zero covariances   0,kt jtE k j    . 

Moreover, while the identifying assumption A0 ensures   0i itE z  , the regressor matrix is 

not strictly exogenous since   ,k jtE z k j  , may well be nonzero. (This would, e. g., 

typically be the case if the common shocks t  are autocorrelated and if kz  involves 
endogenous variables dated 0T  or earlier.)  
                                                
5 Note that it may be a reasonable assumption to postulate that observed and unobserved variation in potential 
outcomes is orthogonal to each other, i. e. any linear combination of predictors is uncorrelated with any linear 
combination of shocks,     1

1 0 0 1 0' 'pre prez Z w T M w     in ADH's approach vanishes 

asymptotically. But it would not imply that the analogous term involving the conditional expectation 

 1
1 0'post postE T I    converges to zero, so that even asymptotically ADH’s approach differs, in general, from 

an approach which minimizes the MSE of the synthetic control error 1
post . 
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So we cannot generally expect the OLS estimate t̂  to be unbiased in finite samples. But by 

virtue of assumption A0 the estimate t̂  is J-consistent for 0t t T   . (Note that under the 

strong assumption of exogeneity of the iz ‘s, t̂  would even be unbiased.) Obviously, the 
associated estimate t̂  is consistent for t   
 
Now define the 1T J  matrix  0 1: 'T TH    6. We have 0H M  , a decomposition 

which is unique if we impose the conventional restrictions that 0 0 'M M  be diagonal and 
1

1 ' FT I    , i. e. all shocks are orthogonal to each other. We can partition 

 0 0 0' ' 'C IM M M , where 0 'IM  is 1J J   and its first column is a column of zeros 
reflecting the fact that the idiosyncratic shock of the treated unit 1 does not affect any of the 
control units. 
 
Moreover, we can partition  C I     with the common factors  0 1' :C C C

T T     

and the idiosyncratic shocks  0 1' :I I I
T T     being of dimensions 1C T  and 11J T  , 

respectively. Note that the first column of I  is the idiosyncratic shock of the treated unit 1. 
We obtain   
 
   0 0 0 0 0 0' ' ' :C I C I C C I I C CH M M M M M M             (19) 
 
 
where   is a 1T J  matrix of the idiosyncratic shocks with typical element ti , 0 1,...,t T T 

, 2,..., 1i J  . Let  2 1: 't t t J      be the period-t column of ' . Clearly, 

0 'I I
t tM   and      0 0 0 0 0 0' ' ' ' ' 'I I I I I I I I I I

t t t t t tE E M M M E M M M        since the J 

idiosyncratic shocks in each I
t  vector are, by definition, orthogonal to each other and have 

unit variance. 
 

0
IM  eine Note that the covariance matrix 0 0'I IM M  is diagonal and, therefore, the least squares 

criterion requires to choose C  and 0
CM  such that  

 
       0 0' 'C C C Ctr tr H M H M      

 
is minimal. This is achieved by the standard principal components estimator, i. e. when 

1
0 1 'C CM T H   and C  equals 1T  times the 1T F  matrix of those orthonormal 

eigenvectors of 'HH  which correspond to the C greatest eigenvalues of 'HH .  
 

                                                
6 We often suppress the superscript post in the following derivations, since all variables are from the post-treatment 
period. 
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The common factors C  and their factor loadings 0
CM  can be consistently estimated by the 

principal components estimator even if 1T  is fixed and only J approaches infinity. Bai (2003) 
shows that necessary and sufficient conditions for this case are the assumptions 
 

A1 
1

2

1 lim 0,
J

ti siJ i
t s

J
 






     

and 

A2 
1

2 2

2

1 lim ,
J

tiJ i
t

J
 






   

 
which we may refer to as asymptotic orthogonality and asymptotic homoskedasticity, 
respectively.  
 
Whether it is reasonable to assume A1 and A2 depends on the data. A2 is probably an 
assumption which can often be justified relatively easily, but absence of serial correlation is not 
necessarily guaranteed by taking the average of a large cross section (A1), since positive 
autocorrelation is plausible for many e. g. shocks with economic relevance such as technology 
shocks, monetary policy shocks or fiscal policy shocks. However, if the outcome variables are, 
say, measures of economic activity for entities which interact with each other in a common 
market, it is hard to think of such shocks as idiosyncratic shocks.  
 
For any shock which hits an important activity of one entity will also affect the activities of all 
other entities with which it trades commodities, services or financial assets or with which it 
shares some degree of factor mobility. Equilibrium requirements and accounting identities 
ensure that any relevant shock will be transmitted to some degree to many, if not all other 
entities. Hence, systems in which individual entities coordinate their decisions in open markets 
are by construction, interdependent. Therefore, all shocks which disturb the interdependent 
system must be considered common shocks, i. e. common factors.  
 
This does not mean that idiosyncratic shocks are non-existent. But a shock which affects one 
entity and leaves no trace for any other entity must be a shock which is not internalized in the 
interdependent system, but rather is extraneous to it. The prime candidate for such shocks are 
measurement errors. If the outcome variables are recorded with error, such errors may well be 
independent between cross section units. And even if measurement errors for some units are 
positively autocorrelated or if there are similar autocorrelation structures for a group of, say, 
neighboring entities, other entities may well have negative autocorrelation structures or the 
mere increase in the number of entities without any serial correlation will ensure that 
asymptotically the phenomenon of serial correlation vanishes. 
 
Moreover, in health sciences or in educational research there may be many settings in which it 
can be reasonable to assume cross sections shocks without pronounced or systematic serial 
correlation. We will therefore in the following assume that assumptions A1 and A2 hold.  
 
Suppose now that we estimate (18) by OLS for all 0t T . We can collect the estimated 

coefficients in the 1T R  matrix  0 1
ˆ ˆˆ ˆ: : ... 'post
T T     and the residuals in the 1T J  

matrix  0 1
ˆ ˆ ˆ: 'T TH    . The number of common factors C is not known, but it can be 

consistently estimated using the information criterion of Bai and Ng (2002). In this procedure 
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both J and 1T  are required to go to infinity for the estimate of C to be consistent, but no specific 
relation between J and 1T  must hold. In particular, J may be much larger than 1T .  
 
Hence, the principal components estimators provides consistent estimates ˆ C  and 0

ˆ CM . Let us 
now, as the second step, estimate 1

C , i. e. unit 1’s loading coefficients for the common factors. 
For all 0t T  we have  
 
  

1

1 1 1 1 1 1 1 1 1 1

:

' ' ' ' '
t

Tr C C I I
t t t t t t t t

u

y z z           


          (20) 

 
For fixed C, suppose that 1T  goes to infinity. Since 1z  is known and consistent estimates of t  
and C

t  have been derived, we can run a regression across time with regression coefficients 1  
and ,

1
C post  

 
 

1

, , ,
1 1 1 1 1

ˆ ˆTr post post C post C post post
Ty z u      , (21) 

 
where  0

,
1 1 1 1: ... 'Tr post

T Ty y y  and  01 1 1 1: ... 'post
T Tu u u  collect the respective post-

treatment periods.   
 
If 1z  contains a constant term, then the dependent variable is adjusted for the mean of the 
potential outcomes in the non-treatment case. Therefore, the estimate of 1  is a (first) estimate 
of the average treatment effect over time for unit 1.  
 
By construction, the error term 1

postu  does not correlate with the regressors ,ˆ C post , so a simple 
OLS-estimate of (21) is 1T  consistent for 1

C . However, the idiosyncratic shock and the 
nonconstant component of the treatment effect 1 1t   may well be autocorrelated and 
therefore we may encounter serial correlation in 1

postu .  
 
But this can be dealt with in the usual way. Suppose 1 1 1 1 1t t tu u    and 1t  is i.i.d., then 
multiplying the period 1t   equation of (21) by 1  and subtracting the result from the period t 
equation yields 
 
    1 1 1 1 1 1 1 1 1 1 1 1 1

ˆ ˆ' 1 ' ' 'Tr Tr C C C C
t t t t t t ty z y z                    (22) 

 
(22) can be estimated by OLS, restricted least squares or maximum likelihood (or any other 
suitable, consistent estimator). OLS would have as drawbacks that no direct estimate of 1  is 
possible and that the direct estimates of 1

C  and 1  will in general not be compatible with the 
direct estimate of 1 1

C  . While this property lends itself naturally for specification tests, it 
would entail the problem that we would not get a unique estimate of 1

C . Moreover, OLS of 
(22) would have to estimate twice as many parameters as OLS applied to (21). Therefore, an 
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OLS regression of type (22) may suffer from few degrees of freedom if (in the finite samples 
of applied work) 1C T  is not much lower than 0.5.    
 
But even if 1T  is sufficiently great, we need a reliable and unique estimate of 1

C  to solve (16). 
Therefore, a consistent estimator from the class of restricted least squares or maximum 
likelihood methods may be preferable. Denote the resulting estimate by 1ˆ

C .  
 
As the third and last step we show that it is possible to solve (16) without knowledge of 1

I  and 

0
I . For this define 

 
      , , , ,

1 1 1 0 0: ,C post N post I post I post I post I
Jw y Y M w w       

 
where ,I post  and the 1J J   matrix 0

IM  are the submatrices of post  and 0M , respectively, 
which correspond to the idiosyncratic shocks. Hence, 
 
      , ,

1 1 1 0
post C post I post I Iw w M w       

 
and (16) becomes 
 

          

       

    
 

, , , ,
1 1 1 0 1 1 0 0

1

, , , ,
1 1 1 0 1 0 0

1

, ,
1 1 0 0

1

,
1

1

1min '

1 ' ' '

2 '

1 '

J

j

post C post I post I I C post I post I I

w

C post C post I I I post I post I I

I

C post I post I I

C post

MSE E w M w w M w I
T

E w w M w M w I
T

E w M w I
T

E w
T

   

   

 

 





    

 
        
 

  





  

    

,
1 1 1 0

, ,
1 1 0 0

1

' ' '

2 '

C post I I

C post I post I I

w w w I

E w M w I
T

 

 

   

  

 

 
since 1 0' 0I IM   and  1

0 0 1 0' 'I IM M T E I   . Note that 1 1'I I   is independent of w and can 
therefore be neglected.  
 
Note further that  ,

1
C post w  is stochastically independent of the idiosyncratic shocks and hence 

 
          , , ,

1 1 0 0 1 0 1 0' ' 0C post I post I I C postE w M w I E w I E w I         

 
where ,

1 1: I post I   .  
 
Setting      , ,

1 1 0 1 0
ˆ ˆ ˆˆ ˆ:C post post C post C Cw z Z w M w      , it follows that solving  
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    , ,
1 1

ˆ ˆˆ ˆmin ' ' '
J

C post C post

w
w w w w 


    (23) 

 
is asymptotically equivalent to solving (16). Note that J and 1T  may approach infinity along 

some arbitrary path and that ̂  is the matrix of residuals from (19).  
 
If *w  denotes the solution to (23), the synthetic control for unit 1 is given by , *

1 0ˆ :N post posty Y w  
and the estimated causal effects of treatment are , ,

1 1 1ˆ ˆ: Tr post N posty y   . 
 
 
 
V. Conclusions 
 
As innovative as it was at the time of inception, the standard ADH (2010) approach to the 
construction of synthetic controls is now known to suffer from a number of numerical, statistical 
and economic issues. We have discussed some known and some less known problems which 
arise when ADH’s method is applied. Against this background we conclude that researchers 
should try to improve on ADH’s method. 
 
One important problem in ADH’s approach is the optimality concept. ADH search for synthetic 
control weights which yield a good fit for the treated unit’s pre-treatment outcomes. But what 
researchers are interested in is a good fit between the synthetic control and the counterfactual 
potential outcome of the treated unit in the case of non-treatment. While this potential outcome 
is unobserved, we argue that it can be estimated from post-treatment data of the control group.  
 
This estimate hinges on the assumption that the potential outcomes of all units are generated by 
a (fairly general) factor model. The treated unit shares the common factors and the coefficients 
of the covariates with the units in the control group. These unobservables can be estimated from 
the cross section variation of the control group post treatment. Moreover, the treated units’ 
loading coefficients for the common factors can be estimated from its post-treatment 
observations (i. e. under treatment). All these estimates are consistent, so that the synthetic 
control weights can be derived which are optimal in the sense of minimizing the post treatment 
mean squared synthetic control error.  
 
But clearly, this approach has some limitations. First, there is the appropriateness of the factor 
model. Simple specification tests and goodness-of-fit-measures for the observable potential 
outcomes may be used to check its validity. Second, since the treated unit shares the same factor 
model structure with the control units, the model implies that treatment has (conditional on 
covariates) been as good as randomly applied. Researchers will need to check thoroughly 
whether this is, in fact, the case for their treated unit or can at least approximately be true. Third, 
the method requires a large cross section and a large time dimension. It is unknown so far how 
large these dimensions should be to justify the the usage of this method.  
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But little such knowledge exists for other consistent SC-methods, e. g. ADH. A useful extension 
of this paper will be a Monte Carlo study which assesses the reliability of our method and of 
competing methods on plausibly calibrated artificial data sets.  
 
And finally, the test of the pudding is in the eating. We have not yet applied this method to real 
world data sets, although a first such study is to follow soon. For any such attempt, it seems 
advisable to use and compare different methods and see how well they fare and how plausible 
the results are when data are not generated in a computer. 
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