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1. BACKGROUND 
lt is well known that System Dynamics (SD), from its very 
beginning, has been reluctant to employ statistical and econo
metric tools for estimation and evaluation of model parameters 
and equations. What has changed up to now is mainly a shift 
in the justification for this refusal. For more than the first 
decade of SD, Forrester's philosophy of selecting reasonable 
parameter va1ues and of judging a model's validity has 
expressed the dominant attitude~ Because of the insensitivity 
of model behavior to most parameter values 1 and the direct 
observability of parameters from the real system 2 statistical 
methods were held to be superfluous. GRAHAM describes 
an arsenal of SD methods for parameter formulation and 
estimation. We have to sustain here from repea ting our 
detailed discussion of this füst period of SD rejection of 
econometric methods28 pp. 244-291, 298-299 and 29 . 

With respect to parameter observability there is a funda
mental dissent between SD and Econometrics (EC): on the 
scale, which ranks data and a-priori-information used in the 
process of parameter determination, we find as extreme 
cases SD models at one end, which use only a-priori
information, and EC models at the other end relying mainly 
on data information 2 4

• But there seems to be a contradiction 
in the SD argumentation against formal parameter estimation: 

ORGMD 
Orlglntl Syste• 

while claiming that parameters do not have to be estimated 
because H,ey are observable, variables are held to be fre
quently u11observable which in turn prohibits statistical 
parameter estimation. At least for socio..economic models 
on a macro level, the official statistics provide a vast amount 
of time-series and cross-sectional data on variables but almost 
none on parameters. This is implicitly acknowledged by 
LEHMANN, whose SD-model of the Federal Republic of 
Germany partially draws on time-series data for variables 
but not for parameters. 

Probably as a by-product of the extensive work on a SD 
National Model of the USA, the econometric challenge has 
encouraged the reoccupation with the statistical estimation 
and testing of parameters and specifications. A remarkable 
shift within FORRESTER's justification to abolish econo
metric techniques from SD modeling has resulted. While in 
"Industrial Dynamics'' statistical tests were assumed to be 
acceptable though mostly useless and only exceptionally 
necessary they are now judged as even dangerous because 
their intemal validity criteria are supposed to provide wrong 
inf erences6

• 
7 

• 

lt is the central purpose of this article to reinvestigate these 
experiments and the negative conclusions drawn by 
FORRESTER and his colleagues. 
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Figure 1: Flnw Diagram of the Experimental Design. 
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" EXPERIMENTAL REINVESTIGATIONS INTO THE 
ACCURACY AND RELL\BILITY OF ECONOMETRIC 
~ETHODS 

The contributions to this topic mentioned above 17
, 1 9, 2 s, 26

• 

all used a linear-in-the-parameters version of FORRESTER's 
Market Growth Model to produce synthetic data instead of 
real world data as.input for parameter estimation. These data 
can be corrupted by errors in variables to take account of 
s.ampling and measurement errors. Furthermore, it is possible 
to study the effects of misspecifications of 'itructural equations 
and econometric hypotheses about the redduals on the para
meter estimates and test statistics. The general methodology 
of such experiments is well known from Mont Carlo studies 
which have been performed in EC to asses the small sample 
properties of various estimators when certain "classical" 
assumptions of the linear regression. model are violated~' 1 1

• 
l 3. 11. 

Fig. l shows a sketch of the complex experimental design and 
gives a rough idea of the numerous factors involved and 
the almost indefinite combinations to be analysed. The reader 
should especially be aware of the fact that far more than 
just one possibility does exist to generate the synthetic data 
from one SO model. lt is, of course, complete Iy impossible 
to investigate all combinations of factors influencing the 
data production process. For the non-predictive evaluation 
of estimation in this section, we have chosen the following 
conditions because they are similar to those enjoyed by 

SENGE Parameters SENGE 
test stat ist ics (1974) (1977 )2) 

K01 -109,8 
1 T-STATI (0,4) -

K02 425,6 
IT-STAT 1 (1,5) -

K"3 -137 ,4 
IT-STATI (1,6) -

K04 12,5 
J T-STAT f (1,5) -

Kl 
252,8 IT-STATI -

K2 
-31,6 IT-STATI -

K3 -0,524 
IT-STATf (J,4) -0,2942 

K4 0, 107 0,0660 IT-STATI (3, 1) 

KS -0,0081 -0,00586 IT-STAT 1 (2, 7) 

Estimation method GLS (2) GlS ( 2) 
R2 0,38 (0,99) 7 (0,99) 
DW 2,04 2,12 

test on homosced. n.r. n.r. 

1) 5 % measurement noise 

SENGE, MASS and MORECROFT (although there are 
differences within and between these studies). Tue DATMOO, 
taken as the reference model for estimation in section 2, 
is simulated by pure rahdom errors in all of the six net rate 
~quations (noise) with standard deviations of 1% of the 
.nean rate values and by pure random (measurement) errors 
in all level variables with zero mean and standard deviations 
of 10% of their current values without any feedback into 
the rate equations over one hundred periods. 

The reason for corrupting the data by measurement errors 
in variables is that all experiments by SENGE et. al. without 
these errors have proven the adequacy of least-squares tech
niq ues for SO models. What is at stake is "only" the question, 
whether this also holds for measurement error conditions. 
That has rigorously been denied by the MIT authors. 

PETERSON has already demonstrated that all the pitfalls 
of SENGE's experiments might be circurnvented by a 
sophisticated estimation technique like Full Information 
Maximum Likelihood via Optimal (Kaiman) Filtering 
(FIMLOF). But this proof does not invalidate FORRESTER's 
argument that the quantitative social and economic sciences 
heavily rely on regression analysis. lt is the aim of this paper 
to answer the question, whether -· contradictory to SENGE's 
conclusions - econometric techniques based on the least
squares principle being less complicated, Iess expensive and by 
far more widespread in common software packages than 

MASS/ MORECR~)T 
SENGE (1977) TRUE 
( 1978) VALUE 

a b 

- - - 400 

- - - -11,24 

- - - -11,80 

- - - 0,912 

408,2 120 2.427 
(4,5) {5,8) (0, 1) 475 

-26,85 -38.4 -136,2 
(1,2) (17 ,5) (0,2} -61,5 

-0,5563 0,038 -14,32 
(3,6) (0,8) (0, 1) -0.6178 

0,07719 -0,005 0,71 
{1,4) (0,3) (0, 1) 0, 1324 

-0,00411 0,001 -0,04 
(0,68) (0,6) (0, l) -0,00975 

OlS OLS IV 
0,849 0,81 >-1 

1,19 2,04 

n.r. n.r. n.r. 

2) All parameters reported to be signif1cant at 90 p.c. confidence level (two-sided test) ~ t >l,28 

Table 1: Estimation Resu/ts for the Net Rate Equation RBL. 



FIMLOF, do not do , the job almost as well. The following 
disc~ion will be organized along the specific equations of 
the Market Growth Model which represent typical SD 
modeling elements. 

2.l G~ Rate Equations of The M'1terial Network 
The backlog equation of the Market Growth Model has been 
the one most extensively studied by the authors.(*) 

(1) B1-(t) = BL(t-1) + DT * RBL(T-1) 

(2) RGL=OB-DR 

(3) OB= S *SE 

(4) SE="-. (DDRM) 

( 5) DR = PC * PC F 

(6) PCF = g
2 

(DDM) 

(7) DDM = B L / PC 

The equations show that the net rate equation RBL (periodical 
change in order backlog) consists of two gross rate equations, 
orders hooked OB and delivery rate DR, which incorporate 
different policies. OB depends on the numbers of salesmen S 
and - in a linearized way - on the delivery delay recognized 
by market DDRM, while DR is governed by the production 
capacity PC and in nonlinear (i.e. cubic) way by the delivery 
delay minimum DDM. All papers have chosen to estimate 
the net rate equation (2) after reduction of their independent 
variables to levels only. 

(2a) RBL = Kl *S + K2*S*DDRM + K3*BL + K4*BL 2 
/ 

PC+K5*BL3 /PC2 

Only SENGE 2 5 has specified g as a cubic instead of a 
linear function with parameters KCl>l, ... , K04. Furthermore 
SENGE 2 5• 

2 6
• MASS/SENGE 1 7 and MORECROFT1 9 have 

lagged the right-hand-side variables by one period. 

lt is very interesting to see what interpretion and conclusions 
have been suggested by the authors. SENGE2 s (p. 53) holds 
that an econometrician would accept the estimated RBL 
equation with its inaccurate parameters, because with the 
exception of the t-statistic for KCl> 1 (Tab. 1, col. 1) he has 
no warning of the inaccuracies. We would raise at least two 
objections: first, an equation with four out of seven parameters 
exhibiting a t-statistic smaller than the "rule-of-thumb "
value of 2(t= l ,96 forcC= 0,05) deserves some reservations 
and, second, there is no reason to trust the R 2 of the level 
equation (0.99) when the R 2 for the actually estimated rate 
equation is very poor (0,38). One reason could be the cubic 
functional form. The linear functional form used by SENGE 
in his later paper26 (p. 182; Tab. l, col. 2) indeed gives more 
accurate parameters for the OB component of RBL. But a 
reestimation with second order GLS shows that R 2 is still 
very poor (0,49) and thus prevents - contradictory to 
SENGE's view 2 6 (p. 183) - the acceptance of inaccurate 
estimates. 

(*) The abbreviarions for the variables names are the same 
as in 5

• A preceeding "R" denotes a rate, "U" an error 
in equarions, "V" an error in van·ables. Van'ables without 
time indices belang to the present pen'od t. 

MASS and SENGE later estimated the same equation by 
OLS instead of GLS. The resulting t-values {Tab. l, col. 3)· 
are interpreted in a remarkably different way now. Because 
of t = -1,248 for K2 "an econometrician viewing at the 
statistical results might conclude that delivery delay 
(a variable associated with K2, M.S.) is a relatively unimportant 
influence on sales" 1 7 (p. 455). But why should K2 be 
questioned while K5 with a much worse t·statistic remairu 
unrefuted? Again, we would argue as before: three out of 
five t-values are undesirably low and call for further thinking. 
MORECROFT's results demonstrates that a change to another 
estimator (Instrumental Variables) is not necessarily a good 
choice. 

The order backlog part of the model contains two different 
policies, one for the inflow, the other for the outflow. Inflow 
and outflow rate equations - if structurally different - are 
the SD counterparts of behavioral or stochastic equations 
in EC and thus have to be estimated seperately (T-STAT i 
beneath parameters). 

(3a) OB= 429,8 * S - 49,2 * S * DDRM 
(33,7) (14,6) 

DW = 1,59 R 2 = 0,94 Goldfeld-Ouandt-
. test: F = 0,13 

(Sa) -DR = -0,598 * BL + 0,1161 * BL 2 /PC - 0,0073 
* BL3 /PC 2 

(20,2) (7 ,1) (3.4) 

DW = 1,99 R 2 = 0,95 Goldfeld-Ouandt· 
test: F = 0,09 

Keening in mind that w:: are dealing with strong measure
ment errors, these estimates can weil be judged as very 
statisfactory. The apparent heteroscedasticity we obtain 
even better estimates for the OB equation. 

(3b) OB= 463.4 * S - 54,6 * S * DDRM 
(39,6) (18,9) 

DW = 1,68 R 2 = 0,98 Goldfeld-Quandt· 
test ~ F = 1 ~7 

2.2 Nonlinear FunctionaJ Relationships 
FORRESTER's original Market Growth Model contains three 
table functions. In DATMOD one table (SE) has been com
pletely linearized while the other two (PCF and CEF) are 
linearized in parameters only and are third order polynomials. 
We have shown in the previcus section that it is no problem 
to estimate SE and PCF - implicitly embodied in OB and 
DR - in the same functional form that was used in DA TMOD. 
This may not always work out, as can be illustrated by the 
rate equation for production capacity ordering PCO, which 
incorporate the third nonlinear function CEF. 

(8) PCO =PC* CEF 

(9) CEF = g
3 

(DDC) 

The function used in DATMOD is of the form 

(9a) PCO = K12*PC + Kl3*PC*DDC + Kl4*PC*DOC:: 
+ K I 5 *PC*DDC 3 
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SENGE2 5 (pp. 53) interprets his estimated parameters (Tab. 3, 
col 1) as moderately accurate but statistically insignificant, 
supporting his conviction that the application of econometric 
methods tends to lead into the two error categories B and C 
c-f Tab. 2 (accepting wrang or rejecting right hypotheses) 
while econometricians hope to avoid these errors as often 
as possible. 

parameter is 
t-statistic 
indicates accurate inaccurate 

significance A B 

insignificance c D 

Tab/e 2: The two pitfalls of econometrics when applied to a SD 
mfXiel (according to SENGE2 5 

). 

We rat her feel that with all t-values smaller than 2 and R 2 

= 0,57 one is not really inclined to accept these estimates, 
especially when the true parameters are unknown. Further
more, the experimental situation shows that the estimates 
are very sensitive to the random number generator ( compare 
cols. 1 and 2 as well as cols. 3 and 4 in Tabl. 3), but can never 
be save-guarded against zero. In such a situation, it is wise 
to try other functional specifications in estimation than have 
been underlying the data production. We would further 
suggest not only to draw on inferential but also to apply 
descriprive statistics, i.e. to plot the relevant variables against 
each other (Fig. 2). 

In spite of the good test statistics obtained by a strictly 
linear specification (Tab. 3, col. 5) it seems preferable to 
drop only the quadratic term out of the equation (Tab. 3, 
col. 6). The comparison shows that we should not strive 

Parameters SENGE SENGE 
test stat1stics {1974) {1977) 

a 

Kl2 -0,0433 -0,0345 0,0064 

1 T-STAT f (1,6) (0.2) 

kl3 0,0693 0,0364 -0,0541 

1T-STAT1 (1.1) (0,7) 

ICH -0,0423 -0.0133 0,0533 

1T-STAT1 (0,9) (1,0) 

KlS 0,0174 0,01049 -0,0053 

f T-STAT 1 (l,651) (0,5) 

Estimation rnethod GLS (2) GLS (2) OlS 

R2 0,57 (0,99) 1 (0, 99) 0,89 

ow 1,91 1,85 2,02 

"'90C <•~ ... , 

lQC: 

IOOC: 

Figure 2: Different functional fonns for CEF. 

SO„ttER TRUE 
VALUE 

b c d 
( except for 
c. d) 

-0,0170 -0,0667 -0,0347 -0,0698 

(0,6) (16,7) (4,7) 

-0.0084 0,068 0,0306 0,1244 

(0.1) (26, l) (3,8) 

0,0258 -0,08138 

(0.7) - -

-0,0001 0,0052 0,02704 

(0.02) - (4.9} 

OLS OlS OlS 

0,91 0,86 0,91 

1,99 1,23 l,99 

Tablt! 3: Estimation results for the weakly nonlinear function PCO. 
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for an isolated maximization of t-values, because this can push 
us towards linear specifications even where they are in
adequate. The heavy measurement error no longer allows 
to estimate the nonlinear function in the same specification as 
it has entered DA TMOD, but it is still possible to receive 
good nonlinear estimates if we carefully respecify ESTMOD. 

2.3 A-Priori-lnfonnations on Parameters 
Another important rate equation of the Market Growth 
Moders material network is the salesmen hiring equation 
SH. Since salesmen hiring (inflow) and firing (outflow) are 
assumed to be regulated by the same decision rule, SH truely 
is a net rate equation. 

( 10) S(t) = S(t-1) + DT * SH(t-1) 

( 1 l) SH = (I/SAT) * (IS -S) 

( 12) IS = BISS 

(13) B = RS * DRA 

Substitution of auxiliary equations (12) and (13) into (Jl) 
leadsto: 

( 1 la) SH(t) = (RS/SS)*(l /SAT)*DRA(t) -(1/SAT)*S(t) 

The estimarion equation used by SENGE and MORECROFT 
is sp~cified as: 

( l lb) H = H = K6*DRA + K7*S 

SENGE~ s obtained significant parameter estimates by GLS 
wh1d1 might be regarded as too ina:curate (Tab. 4, col. l}. 
The ~me might be said of MORECROFT's OLS-estimates. 
MORECROFT further proves that lV are capable of coming 
up wit h more exact parameters in this case. lt is doubtful 

SENGE Parameters SENGE 
test statistics {1974) (1977)1) 

a 

though, that t-statistics of size 2 or 3 together with an R 2 

= 0 20 would lead to an acceptance of the estimates if one 
does not know the true parameters, which is the normal 
case in nonexperimental situations. 

But even when K6 and K 7 are unknown this equation is a 
good example for a case in which partial a-priori information 
on the parameters is available and asks for consideration. 
Of the three parameters in eq. (l Ia). only the salesmen adjust
ment time SAT is unobservable while revenue to sales RS 
as well as salesman salery SS are directly ob!.ifrvable constants. 
There is no reason why this a-priori information should be 
left out of the estimation process. With RS = 12 and SS = 2000 
we get: 

(l lc) SH = 0,006*(1 /SAT)*DRA · (l /SAT) * S 

We can therefore impose the restriction 

(l 1d)K6 + 0,006*K7 = 0 

On the OLS-estimation. The ROLS-parameters (restricted 
ordinary least squares) are very accurate and extremely tight 
(Tab. 4, col. 6). This exarnple should encourage the use of 
a-priori-information, held to be so frequently available by 
system dynamicists, within the econometric estimation of 
SD rnodels. 

2.4 First Order Information Delays and Smoothing 
The Market Growth Model contains two füst order infor
rna: :on delays DDRC and DDRM which have not been 
esumated in either of the MlT studies. The problems involved 
in estimating the time constants of first order delays under 
the measurement error cond itions chosen by the authors 
can weil be understood by using an analyncal formula de
veloped for the asymptotic case of unlimited sample size. 
The insighrs gained can then be used to uncover the reason 

HORECROFT SOMMER TRUE (1977)2} 
VALUE 

b a b 

K6 0,00065 0,00051 0.00014 0.0004? 0,00010 0,000?4 

P-STATI ( 4 ,0) (9,4) ( 3' l) (6,9) (38,0) 0,0003 

K7 -0,12972 -0.012 -0,077 -0,00236 -0,04027 

IT-STATf (3,4) -0,098 (3,4) (2.4) (0, 7) (5145,7) -0,05 

Estimation method GLS ( 2) GLS (2) OLS IV OLS ROLS 

R2 0,17 (0.99) ? (0,99) 0,83 0,20 0,75 0,40 

ow 2,01 2 .0<1 0,82 2,10 0.31 l,?2 

1) Parameters rermrted tobe stalistically significant ;,t a 90 p.c. confidence level 

2) STDV of measurement error 5 i p.c. 

Tahle 4: Estimativn results j(Jr SH. 
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for the poor estimates the authors received for the delivery 
rate average DRA which is formally equivalent to a first 
order information delay. We will limit the discussion to DDRC 
and not touch upon DDR.\1, because the first equation presents 
the worse estimates. 
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Fzgure 3: Time series of error-[ree and error-corrupted variable, (BL/DRA-DDRC). 
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DDI is a defmitional equation of the theoretical delivery 
delay while DDRC is the delivery delay as recognized by the 
company. The parameter to be estimates is the time constant 
TDDRC of this recognition delay: 

(15a) RDDRC = 0,107*(BL/DRA- DDRC) 
(8,8) 

DW=0,64 R 2 = 0,42 Goldfeld-Quandt
test: F=2,14 

This implies an estimates value for TDDRC=9 ,3 months 
which is more than twice the true value of 4 months. Denote 
x = BL/DRA-DDRC for the right-hand-side variable of (15) 
and let v be the measurement error of x, then the probability 
limit for (1/TDDRC) in infinite samples is1 5 (p.293): 

(1 /TDDRC) . 0 ,25 
(17) plim (fifi)'i3'RC) = = = 0,1062 

C2 (v) 0,475 
1+ l+--

C2(x) 0,351 

Thus, the probability limit for (1 /TDDRC) is very close to the 
experimental fmite sample size estimate (0,107). Formula 
(17) tells that the degree of underestimation depends on the 
ratio of the measurement error variance to the variance of 
the error free time series: 

(18) C2 (v) ! C1 (x) 
= 0,457/0,351 

(19) C2 (VBL-BL) / C2 (BL) 
= 31377417/1241055738 

(20) C2 (VDRA-DRA) / C2 (DRA) 
= 2443571/59892751 

(21) C2 (VDDRC-DDRC) / C2 (DDRC) 
= 0,157/1,398 

(22) C2 (VDDI-DDI) I C2(DDI) 
= 0,330/ l ,573 

= 1,353 

= 0,025 

= 0,041 

= 0,112 

= 0,210 

Of course, (18) is the ratio which leads to the severe distortion 
of the TDDRC estimate in (17). But neither the relative 
measurement error variances (19) to (21) nor the division of 
BL/DRA in (22) are the main source of the bias but rather a 
too small variance of the error free difference variable x = DDI
DDRC (0,351 ). lt must be doubtfuL though, that realistic 
economic time series contain measurement errors whose 
variances are of the same size as or even exceed the variances 
of the '4true'~ time series, as it is the case in the experimental 
situation discussed here. Fig. 3a illustrates these conditions: 
observed time series would have to be highly erratic because 
random measurement errors are superimposed on "true" 
time series with much smoother dynamics. This seems to be 
a very unlikely situation. Nevertheless it might be useful 
to plot the data against time before estimation. If such 
erratic plots really occur, the question arises whether they 
reflect a true dynamic process with very short periodicity 
or are rather a result of random measurement errors. 

SENGE and MASS have referred to MORGENSTERN's 
classical work "On the Accuracy of Economic Observation" 2 0 

to justify a measurement error of 10% employed in their data 

production process. But neither MORGENSTERN's inquiry 
nor the voluminous modern literature on that topic (e.g.1• 2 • 
3

• 
2 3• 

3 1
• suggest that errors in economic statistics are purely 

random. Comparisons of preliminary and revised data as 
well as comparisons of data compiled by different institutions 
usu illy suggest a strong systematic error component. This is 
quite plausible since the methods of data compilation which 
produce these errors are not changed every period but used 
for some years until "better" methods have been developed. 
This is not the place for an in-depth discussion of the kind 
and magnitude of measurement errors in economic and socia.l 
statistics, but even a cursory contemplation confirms our 
reluctance to accept the 10% random measurement error of 
Fig. 3a as realistic. In short, MADDALA can be approved 
when stating that "the errors occuring in economic data are 
systematic rather than random"1 5 (p. 292). 

Just for illustrating the relevance of the disput we have alter
natively produced data where one part of the measurement 
errors in systematic (5% of the utrue" variables mean values} 
and · the other part is random (standard deviation of 5% of the 
variables current values). Fig. 3b displays the resulting time 
series for the right-hand-side variable BL/DRA-DDRC~ 
which still contains a remarkable measurement error but 
of different composition. OlS estimation of (15) based on 
these data leads to: 

(15b)RDDRC = 0,192 *(BL/DRA-DDRC) 
(15,7) 

DW = 0,82 R2 = 0,71 Goldfeld-Ouant
test: F = 1,71 

The substantial improvement of (15b) over (15a) by simpl~ 
making half of the 10% measurement error systematic is 
beyond discussion. Since the results obtained for DDRC also 
hold for DDRM we can skip the latter equation. The last 
equation deserving attention explains the delivery rate average 
DRA, because the problems of estimating first order delays 
or smoothing processes are overlayed here by the neccesity 
to watch for parameter restrictions acro~ equations. 

(23) DRA(t) = DRA(t-1) + DT * RDRA(t-1) 

(24) RDRA = (1/DRAn *(DR- DRA) 

Since DR is explained by eqs. (5) to (7), eq. {24) has to be 
case into the following form for estimation: 

(25) RDRA = K8*BL + K9*BL2 /PC + K10*BL3 /PC2 

+ Kl l *DRA 

The results of our OLS estimation as well as the GlS estimates 
published in SENGE26 are very poor (Tab. 5). GlS estimates 
reported earlier in SENGE2 5 are much better but we did not 
find a way to reproduce them under the conditions described 
there. Using the a-priori knowledge Kl 1 = (-1/DRAT), eq.(25) 
with SENGE 's 197 4 parameters becomes 

(25a) RDRA = 0,37 40*(0,6643*BL + 0,1484*BL 2 [PC 
+ O,Ol 144*BL3 /PC 2 

- DRA) 

Thus the three parameters of the DR component are quite 
close to their true values and only the time constant ( l /DRA T) 
is heavily biased implying a delivery rate avering time of 2} 
instead of one month. This is no surprise after the previous 
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Parameters, SENGE SENGE SOMMER TRUE 
test statistics (1974) (1977 )1) a b b* VALUE 

K8 0,2485 0,0124 0.2438 
IT-STATI {5,6) 0,0876 (2,2) (48,4) K8 • = -K3 = 0,6476 0,6178 

K9 -0,0565 -0,0054 -0,0502 
IT-STATI (5,2) -0,0246 (3,3) {28,8) K9 • = -K4 = -0, 1332 -0, 1324 

KlO 0,0043 0,0005 0,0035 
IT-STAT 1 (4,5) 0,0023 (3,1) (16,5) KlO • = -K5 = 0,00916 0,00975 

Kll -0,3740 0,0163 -0,3764 
Kll • = -1 IT-STAT 1 (5,2) -0,1024 (1,8) (52,4) -1 

Estimation method GlS (2) GlS (2) OLS R3SLS 

R2 0,24 (0,99) ? (0,99~ 0,41 

ow 2,15 2, 13 0,32 

test on homosced. n.r. n.r. 0,55 

1) All p-lrameters reported tobe significant at 90 p.c. confidence level (two-s1ded test) „ t > l,28 

Table 5: Estimation results for the smoothing equation DRA. 

discussion of the problems with the estimation of the RDDRC 
equatiön. Divering from SENGE's estimation procedure the 
following a·priori parameter restrictions should be taken into 
account: 

(26) K8 = KJ 

(27) K9 = K4 

(28) KIO = KS 

These parameter restirctions across equations can be captured 
by R3SLS (Restricted Three Stage Least Squares) estimation 
of a submodel existing of the OB, DR, BL, RDRA, and DRA 
equations. After again taking account for: 

(29) Kl 1 = -{I/DRAn 

we obtain the following equations 

(Sb) DR= --0,6476*BL + 0,1332*BL2 /PC - 0,00916 
*BL3 /PC 2 

(25b) RDRA = 0,3746*(0,6476*BL- 0,1332*BL 2 /PC 
+ 0,00916*BL3 /PC2 

- DRA) 

The consistency between DR and RDRA is now guaranteed. 
What remains is the unsatisfactory estimation of DRAT. 
With the same mixed systematic and random measurement 
error already used for RDDRC thls problem vanishes too: 
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(Sc) DR= 0,5620*BL + 0,1030*BL2 /PC - 0,00619 
*BL: /PC 2 

(25c) RDRA = 0,8889*(0,5620*BL - 0,1030*BL 2 /PC 
+ 0,00619*BL3 /PC 2 

- DRA) 

The slightly worse parameters in the DR-equation are over
compensated by the impressing improvement for DRA T, 
which is now very close to its true value. 

3. INVESTIGA TION OF THE RELEV ANCE OF 
DIFFERENT DATA PRODUCTION MODES FOR 
PARAMETER ESTIMA TION 

At the beginning of section 2. we have described the data 
production conditions chosen for the following estimation 
experiments .. They were made to come close to the 
experimental designs of the MIT studies. Thus our critical 
reinvestigation and divering interpretations do not leave 
the platform of assumptions underlying these experiments. 
This does not mean that we accept these assumptions as 
useful methöds for the production of realistic data. In section 
2.4., purely random measurement errors have already been 
debated as one example which deserves attention. In Tab. 6 
the estimation results of section 2 are taken as the reference 
schema (DATMODI) for diverging modes of generating 
synthetic data. The indices which describe these conditions 
are explained in Fig. l. 

Compared with DA TMOD 1, neither data sampling(DA TMOD3) 
nor reduced length of the time series (DATMOD8) is of major 
importance for the parameter estimates. The same holds for 
DATMOD6, where the standard deviation of the measure
ment error has been linked to the mean instead of the current 
value of the time series and for the stochasization of gross 
instead of net rate equations (DATMOD2), which must not 
be confused with the important alternative of estimating 
net or gro~ rate equations as discussed in section 2.I. 
DATMOD4 proves that reduced measurement error variance 
is very favourable especially to the estimates of time constants 
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of delay's (l/DRAT; Kl6 = l/TDDRC; Kl7 = l/TDD&\i) 
while a greater errors-in-equation-variance as well as a system
atic measurement error component (DATMODS) are not 
harmful. 

DA TMOD9 replicates DATMOD5 five times with different 
sequences of random numbers to give an impression of the 
Monte Carlo aspects. Finally, parameter estimates become 
perfect when the error-corrupted level variables are fed back. 
into the rate equation during data generating (DA TMOD7). 
This is very mich in line with econometric theory which 
states, that "if decision makers respond to measured data 
then measurement error is irrelevant and our previous Ieast
squares techniques will be valid." 1 1 (p. 283). 

lt seems Iegitimate to conclude that the proper use of common 
least-squares methods under data production conditions, 
which can still be judged as realistic (e.g. DATMODS), leads 
to very satisfactory parameter estimates. Furthermore the 

.statistical and econometric criteria are very helpful and hardly 
misleading yardsticks in the search for adequately specified 
equations. 

4. PREDICTIVE EVALUATION OF ECONOMETRICALLY 
ESTIMA TED SO MODELS 

MASS and SENGE, who ended up with rather devestating 
judgements on least-squares estimation of SD models, have 
favored model behavior tests as a powerful alternative. To 
support their view, they compared the standard run of the 
Market Growth Model (Fig. 4) with a simulation in which 
the ::nsignificant parameter K2 of the RBL equation (see 
Tab. I, coL 3) was set at zero (Fig. 5). They correctly observe 
that the behavior of the Market Growth Model is altered 
markedly, and they conclude that '4the outcomes of the 

a..• r 1. '"' ••·••n z:a.u•t u. a•r ..: 
l.Mt l.d. ··~·· ,..... „.„ •• l 

::=: • • • '\:!·:~ • ·7 :•:M•. • • • • -~·=~ • • • • • ~·:•;- . 
. " . ' . . . 
• ".j t : : : 

:a..a.. - - - - - - - ': „ - - - . - • - - - - - -. - - - - - - - - . . ~ : . :~ 
,... : : : 
<: J. . 

....... - ..... - ........... „ „ .... „ - • 

Figµre 4: Simulation with trne parameters 
(stan.dan:l nm). 
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alternative tests highlight the point that, of the two tests, 
only model behavior tests reliably measure the importance of 
an hypothized impact of one variable on the othern.1 7 (p.457). 
Th.is conclusion is not defendable. 

First, we have shown in section 2.1. that a separate estimation 
of OB instead of RBL renders a statistically significant in
fluence of delivery delay recognized by market on sales 
effectiveness. Second, it is wrang to set an insignificant para
meter at zero in following simulations. Third, hanging on to 
their RBL equation,MASS and SENGE should ~1ave re-estimated 
the RBL equation without the variable DDRM attached to 
the insignificant parameter K2 before model behavior testing. 
The perception to be made is striking. 

(2b) RBL = 69,2*S + 0,2466*BL - 0,0739*BL2 /PC 
+ 0,0076*BL3 /PC2 

DW = 0,23 R2 = 0,06 

The R2 drops from 0,85 (Tab. l, col. 3) to 0,06 when the 
term S • DDRM is eliminated. Thus a model-behavior test 
including eq. (2b) is unnecessary. The R2 already teils that 
DD&\i has to remain in the equation and may not be dropped. 

Simulation with the parameters esthnated from data corrupted 
by realistic measurement errors (DATMOD5 in Tab. 6) shows 
a surprisingly weak change in model behavior, as can be seen 
by comparison of Figs. 4 and 6. This can well be attributed 
to the insensitivity of the Market Growth Model to the 
precision of parameter values. Bit it is incorrect to infer that 
"for acceptance simulation of the complete estimated model, 
the econometric model~builder must ignore all indications 
of statistical insignificance in estimation results"2 5 (p.57), 
because we have demonstrated that a proper use of econo-

····· - - -----.- ----. -- . -------... -. ----- . 

Figure 5: Simulation with insigniftcant parameter K2 = 0 
(Tab. 1. col 3 }. 
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Figure 6: Simulations with parameters estimated from more 
realistic data. 

metr!c ted!:liques leads to significant esti::.ates. Econometric 
and model-behavior tests do not contradict but corroborate 
each other. 

5. CONCLUSIONS AND GUIDELINES 
Our critical reappraisal of diverse MIT studies on the adequacy 
of econometric methods for SD models has led to quite 
encouraging resutts. While these studies - especially those 
by SENGE and MASS - ended up in blaming econometrics 
for misguiding the model-builder practically in all but "'ideal„ 
situations, we have boiled down the problems to two areas 
of real concern. The first is the bias of time-constant estimates 
of exponential delay elements (shown for first order delays 
but most probably carried over to higher order delays by 
cascading), which is in line with asymptotic econometric 
theory. The degree of bias mainly depends on the standard 
deviation of the measurement error's random component, 
what points to the second area of general concern: the kind 
and size of measurement errors. We have argued that "really 
realistic" measurement conditions probably lead to more 
accurate parameters than those obtained from the rather 
extreme data production devices in the MIT studies. Never
theless, even these very bad measurement errors rendered 
parameter estimates which could very weil face behavior 
mode tests such as predictive or policy simulation. 

The most important conclusions tobe drawn from our experi
mental reinvestigation is the refutation of FORRESTER 's 
hypothesis that least-squares methods yield "'misleading 
indications from the internal measures of validity". We cannot 
recognise a need for "a basic reorientation of model building 

and theory testing in the social sciences„1 7 (p. 459). What the 
MIT authors call for - namely model behavior tests - is long 
known and practiced in EC model building which relies both 
on single-equation evaluation by traditional test-statistics as 
well as on model simulation. Thirty years of simulation ex
perience with hundreds of macro-ecor ometric models disprove 
the as.sertation that in "econometric model building, where 
system models are common, the single-equation philosophy 
of testing still predominates"1 7 (p. 459). 

For a sound and careful usage of EC methods within SO 
model building we suggest to observe the following guide
lines: 

1. Estimate gross rather than net rate equation. 

2. Specify nonlinear functions based on data plots of 
dependent against independent variables; this is 
especially applicable in cases where SD normally 
employs table functions. 

3. Be careful with the estimation of exponentially dis
tributed lags (delays) because they are sensitive to 
strong measurement errors. Plot data against the 
time axis and consider well, if measurement errors 
might contribute to an erratic time pattem; there is 
no chance to directly investigate the measurement 
error in an nonexperimental research with real world 
data! 

4. Make use of all available a-priori-informations like 
restrictions on and between parameters. 

5. Start with 01.S before eventually changing to more 
sophisticated methods. 

This list is by no means ment to be complete and should be 
amrnended by further practical experience. But this requires 
the readiness to actually employ EC methods in SD modeling, 
which would be more helpful than pure calls for future research 
"on possibilities for intergrating the two testing approaches"1 6 

(p. 834). The possibilities are at hand. Knowledge in this field 
only grows when we turn this possibility into reality. 
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