LÖSUNG 13

a.

• Die Variablen sollten hoch miteinander korrelieren. Deshalb sollten die einfachen Korrelationskoeffizienten hoch ausfallen. Sie sollten sich außerdem wechselseitig weitgehend überdecken. Deshalb sollten die partiellen Korrelationskoeffizienten gering ausfallen.

Die Höhe der Korrelationen kann man aus der Korrelationsmatrix entnehmen. Das KMO = Kaiser-Meyer-Olkins -Maß ist ein Maß dafür, inwieweit die beiden oben angegebenen Bedingungen erfüllt sind. Es kann maximal den Wert 1 annehmen. Ein Wert von 0,9 und höher gilt als großartig, von 0,8 bis < 0,9 als lobenswert, von 0,7 bis < 0,8 als mittel, von 0,6 bis < 0,7 als zweitklassig, von 0,65 bis > 0,6 als sehr schlecht und von weniger als 0,6 als inakzeptabel. Das KMO wird für die gesamte Korrelationsmatrix ausgegeben, aber auch für die einzelnen Items, letzteres in Form der Diagonalen in der Anti-Image-Korrelationsmatrix.

Der "Bartlett-Test auf Sphärizität" wird häufig ebenfalls zur Prüfung herangezogen. Er prüft die Hypothese, dass die Daten aus einer Population stammen könnten, bei der alle Korrelationskoeffizienten Null sind. Diese Hypothese sollte zurückgewiesen werden können.

• Die Befehle "Analysieren", "Dimensionsreduktion", "Faktorenanalyse…" öffnen die Dialogbox "Faktorenanalyse". Es werden WOHLSTAND bis POLEINST als Analysevariablen auswählt.

ta Faktorenanalyse		×
 Jahr ✓ Nr ✓ ArbStat ✓ Schuljahre ✓ Abschl ✓ Geschl ✓ FAC1_1 ✓ FAC2_1 ✓ FAC3_1 	Variablen: Wohlstand Bildelt Bildselbst Fahigkeit Fleiss Beziehungen Wert	Deskriptive Statistik Extraktion Rotation Scores Optionen
ОК Еіпfü	gen Zurücksetzen Abbrec	hen Hilfe

• Klicken auf die Schaltfläche "Deskriptive Statistik…" öffnet die Unterdialogbox "Faktorenanalyse: Deskriptive Statistiken". Markieren Sie dort die Optionen "Koeffizienten", "Reproduziert", "Anti-Image" und "KMO und Bartlett-Test auf Sphärizität". Beenden Sie mit "Weiter" und "OK".

🔄 Faktorenanalyse: Deskriptive Statistiken 🛛 💽
Statistik Univariate deskriptive Statistiken Anfangslösung
Korrelationsmatrix Koeffizienten Invers Signifikanzniveaus Reproduziert Determinante Anti-Image KMO und Bartlett-Test auf Sphärizität
Weiter Abbrechen Hilfe

Die ausgegebene Korrelationsmatrix sei hier nicht dargestellt. Sie ist wegen ihrer Größe etwas schwierig zu beurteilen. Insgesamt finden sich wenige sehr große Korrelationskoeffizienten, der größte ist 0,56. Dies spricht nicht unbedingt für eine sinnvolle Anwendung der Faktorenanalyse. Aber entscheidend ist, ob es einige Gruppen von Variablen mit hinreichend großen Korrelationskoeffizienten gibt.

Leichter anzuwenden ist das KMO-Maß. Es zeigt mit 0,82 einen recht guten Wert (ab 0,8 erhält das Maß die Einstufung lobenswert).

KMO- und Bartlett-Test

Maß der Stichprobe Meyer-Olkin.	,820		
Bartlett-Test auf Sphärizität	Bartlett-Test auf Ungefähres Chi- Sphärizität Quadrat		
	78		
	Signifikanz nach Bartlett	,000	

Sehen wir uns nun in der Anti-Image-Matrix die unter Hälfte und dort die Werte in der Diagonalen an, so haben wir die KMO-Werte für die einzelnen Items. Auch sie fallen gut aus. 0,573 ist der geringste Wert, die meisten Werte liegen über 0,8.

Anti-Image-Matrizen														
		Wohlstand	Bildelt	Bildselbst	Ehrgeiz	Fähigkeit	Fleiss	Beziehungen	Polverb	Rasse	Religion	Region	Gender	PolEinst
Anti-Image-	Wohlstand	,686	-,207	,013	-,019	-,014	,052	-,115	-,069	-,078	,023	-,016	-,053	-,012
Kovarianz	Bildelt	-,207	,737	-,212	,027	-,050	,018	-,038	-,029	-,003	-,001	-,015	,006	-,039
	Bildselbst	,013	-,212	,803	-,170	,020	-,143	-,045	-,007	-,009	,048	,003	,006	-,001
	Ehrgeiz	-,019	,027	-,170	,839	-,068	-,210	-,024	,001	-,027	,048	-,002	,012	,031
	Fähigkeit	-,014	-,050	,020	-,068	,861	-,142	-,089	-,056	-,051	,022	-,033	,019	-,019
	Fleiss	,052	,018	-,143	-,210	-,142	,824	-,017	,039	,088	-,064	,011	-,005	-,022
	Beziehungen	-,115	-,038	-,045	-,024	-,089	-,017	,618	-,235	-,036	-,040	,004	-,021	,022
	Polverb	-,069	-,029	-,007	,001	-,056	,039	-,235	,564	-,054	-,007	-,009	-,018	-,133
	Rasse	-,078	-,003	-,009	-,027	-,051	,088	-,036	-,054	,630	-,114	-,112	-,151	,002
	Religion	,023	-,001	,048	,048	,022	-,064	-,040	-,007	-,114	,630	-,168	,039	-,179
	Region	-,016	-,015	,003	-,002	-,033	,011	,004	-,009	-,112	-,168	,610	-,120	-,096
	Gender	-,053	,006	,006	,012	,019	-,005	-,021	-,018	-,151	,039	-,120	,667	-,150
	PolEinst	-,012	-,039	-,001	,031	-,019	-,022	,022	-,133	,002	-,179	-,096	-,150	,563
Anti-Image-	Wohlstand	,850 ^a	-,290	,018	-,026	-,018	,069	-,177	-,111	-,119	,035	-,025	-,078	-,019
Korrelation	Bildelt	-,290	,780 ^a	-,276	,034	-,063	,023	-,056	-,045	-,004	-,002	-,022	,009	-,061
	Bildselbst	,018	-,276	,644ª	-,207	,024	-,176	-,065	-,010	-,012	,067	,004	,008	-,001
	Ehrgeiz	-,026	,034	-,207	,637ª	-,080	-,253	-,033	,002	-,037	,066	-,003	,016	,046
	Fähigkeit	-,018	-,063	,024	-,080	,835ª	-,168	-,122	-,080	-,069	,030	-,046	,025	-,027
	Fleiss	,069	,023	-,176	-,253	-,168	,573ª	-,024	,057	,122	-,088	,016	-,007	-,032
	Beziehungen	-,177	-,056	-,065	-,033	-,122	-,024	,821ª	-,398	-,057	-,064	,007	-,033	,037
	Polverb	-,111	-,045	-,010	,002	-,080	,057	-,398	,835ª	-,091	-,011	-,016	-,030	-,236
	Rasse	-,119	-,004	-,012	-,037	-,069	,122	-,057	-,091	,874 ^a	-,181	-,180	-,232	,004
	Religion	,035	-,002	,067	,066	,030	-,088	-,064	-,011	-,181	,810ª	-,272	,060	-,301
	Region	-,025	-,022	,004	-,003	-,046	,016	,007	-,016	-,180	-,272	,869ª	-,188	-,164
	Gender	-,078	,009	,008	,016	,025	-,007	-,033	-,030	-,232	,060	-,188	,859ª	-,245
	PolEinst	-,019	-,061	-,001	,046	-,027	-,032	,037	-,236	,004	-,301	-,164	-,245	,840ª

a. Maß der Stichprobeneignung

Das Ergebnis des "Bartlett-Tests auf Sphärizität" findet sich ebenfalls im Output des KMO. Die Hypothese, die Daten könnten aus einer Population mit lauter Nullkorrelationen stammen, kann zurückgewiesen werden: Die Abweichung von der Nullhypothese ist signifikant. Allerdings sollte man auf diesen Test nicht viel geben. Er leidet unter dem Mangel aller Tests, bei denen die Nullhypothese die eigentliche Zielhypothese ist. Bei großen Stichproben kommt praktisch immer, auch bei minimalen Abweichungen, eine signifikante Abweichung von der Nullhypothese zustande. Da wir mit 1335 Personen eine recht große Stichprobe haben, kann man sich diesen Test praktisch sparen. Er wird auch bei sehr kleinen Korrelationskoeffizienten auf jeden Fall eine signifikante Abweichung von der Nullhypothese indizieren.

Insgesamt spricht aber insbesondere der KMO-Test für die Brauchbarkeit der Daten für eine Faktorenanalyse.

Zu klären wäre u.U. auch noch, ob die Stichprobengröße für eine Faktorenanalyse ausreicht. Da die benötigte Stichprobengröße von vielen Komponenten abhängt, kann dies hier nur überschlägig geprüft werden.

Gängige Kriterien sind: 10 Fälle pro Variable oder mindestens 300 Fälle. Bei 13 Variablen wären dies nach dem ersten Kriterium mindestens 130 Fälle. Dies ist in unserem Falle weit überschritten, ebenso das zweite Kriterium.

b.

• Das betrachtete Modell lässt sich wie folgt beschreiben: Jede Variable kann aus Common Factors und Unique Faktor erklärt werden:

 $Vx = a1F1 + a2F2 + a3F3 \dots + Ux$

a = Koeffizienten oder Ladungen.

 $Fi = w1V1 + w2V2 + \ldots + wxVx$

w = Faktor Score Koeffizient.

• Wir wollen mit dem voreingestellten Extraktionsmodell "Hauptkomponenten" arbeiten und als Rotationsverfahren "Varimax" verwenden.

Zur Bestimmung der Anzahl der Faktoren benutzt man in der Regel die Eigenwerte. Da bei der Anfangslösung (unabhängig von der verwendeten Extraktionsmethode) immer die "Hauptkomponentenmethode" verwendet wird, die so viele Faktoren wie Variablen ausgibt, benutzt man in der Regel für die weitere Analyse so viele Faktoren, wie bei der Anfangslösung Eigenwerte größer gleich 1 besitzen. Alle anderen Faktoren erklären weniger von der Varianz als es die Variablen alleine erklären würde. (Allerdings kann man von dieser Zahl abweichen, wenn man z.B. aus inhaltlichen Gründen eine Lösung mit weniger oder mehr Faktoren vorzieht. Dann wäre die Zahl der gewünschten Faktoren einzustellen oder aber man stellt einen Eigenwert $\neq 1$ ein). Zur Bestimmung der Zahl der Faktoren wird auch häufig ein Screeplot herangezogen. Dazu wählen Sie:

• "Analysieren", "Dimensionsreduktion", "Faktorenanalyse"

Wählen Sie die zu analysierenden Variablen WOHLSTAND bis POLEINST aus.

Klicken Sie auf die Schaltfläche "Extraktion...". Es öffnet sich die Unterdialogbox "Faktorenanalyse: Extraktion". Stellen Sie, falls nicht bereits ausgewählt "Hauptkomponenten" als Extraktionsmethode ein. Klicken Sie dann auf das Kontrollkästchen "Screeplot". Bestätigen Sie die Auswahl mit "Weiter" und "OK".

🔄 Faktorenanalyse: Extraktion							
Methode: Hauptkomponenten	▼						
Analysieren	Anzeige						
Korrelationsmatrix	Nicht rotierte Faktorlösung						
C Kovarianzmatrix	Screeplot						
Extrahieren Basierend auf dem Eigenwe Eigenwerte größer als: Feste Anzahl von Faktoren Zu extrahierende Faktoren:	rert 1						
Maximalzahl der Iterationen für Weiter Ab	Konvergenz: 25 bbrechen Hilfe						

Als Ergebnis zeigt sich u.a.:

	A	nfängliche Eiger	nwerte	Summen von quadrierten Faktorladungen für Extraktion				
Kompo- nente	Gesamt	% der Varianz	Kumulierte %	Gesamt	% der Varianz	Kumulierte %		
1	3,822	29,402	29,402	3,822	29,402	29,402		
2	1,776	13,660	43,062	1,776	13,660	43,062		
3	1,213	9,332	52,394	1,213	9,332	52,394		
4	,953	7,329	59,723					
5	,793	6,099	65,822					
6	,752	5,788	71,610					
7	,664	5,104	76,714					
8	,654	5,029	81,743					
9	,582	4,479	86,222					
10	,496	3,814	90,036					
11	,488	3,755	93,790					
12	,442	3,401	97,191					
13	,365	2,809	100,000					

Erklärte Gesamtvarianz

Extraktionsmethode: Hauptkomponentenanalyse.

Aus der Tabelle kann man entnehmen, dass 3 Faktoren einen Eigenwert größer 1 besitzen, die

zusammen ca. 52 % der Gesamtvarianz erklären.

Auch der Screeplot geht nach 3 Faktoren deutlich in eine flachere Kurve über, so dass auch dieser für eine Drei-Faktoren-Lösung spricht. (Allerdings könnte man sich u.U. auch mit einer 4-Faktoren-Lösung anfreunden, da der Eigenwert des vierten Faktors noch nahe bei 1 liegt und der Verlauf des Screeplots nach 4 Faktoren noch deutlich flacher wird).

Wir wollen mit der Drei-Faktoren-Lösung weiter arbeiten.

c.

• Dazu wählen Sie:

"Analysieren", "Dimensionsreduktion", "Faktorenanalyse".

Wählen Sie die zu analysierenden Variablen WOHLSTAND bis POLEINST aus.

(Schalten Sie in der Dialogbox "Faktorenanalyse: Extraktion" die Optionen "Screeplot" und "Nicht rotierte Faktorlösung" aus).

• Klicken Sie auf die Schaltfläche "Rotation…". Es erscheint die Dialogbox "Faktorenanalyse: Rotation".

Wählen Sie als Methode "Varimax". Bestätigen Sie die Auswahl mit "Weiter" und "OK".

🔄 Faktorenanalyse: Rotation 🛛 📧
Methode
C Keine Quartimax
Varimax Equamax
Oblimin, direkt O Promax Delta: 0 Kappa 4
Anzeige Rotierte Lösung Ladungsdiagramm(e)
Maximalzahl der Iterationen für Konvergenz: 25 Weiter Abbrechen Hilfe

Von der sich ergebenden Ausgabe interessiert uns hier nur die "rotierte" Komponentenmatrix.

		Komponente	
	1	2	3
Wohlstand Man benötigt eine wohlhabende Familie um voranzukommen	,193	,734	-,055
Bildelt Man benötigt gut ausgebildete Eltern um voranzukommen	,040	,704	,134
Bildselbst Man benötigt gute Ausbildung um voranzukommen	-,132	,356	,568
Ehrgeiz Man muss ehrgeizig sein um voranzukommen	-,078	,033	,716
Fähigkeit Man muss natürliche Fähigkeiten besitzen um voranzukommen	,206	,262	,404
Fleiss Man muss hart arbeiten um voranzukommen	,040	-,184	,781
Beziehungen Man muss die rechtigen Leute kennen um voranzukommen	,280	,658	,122
Polverb Man muss politische Verbindungen haben um voranzukommen	,432	,601	,019
Rasse Man muss zur richtigen Rasse gehören um voranzukommen	,631	,316	-,055
Religion Man muss zur richtigen Religion gehören um voranzukommen	,764	,006	,017
Region Man muss in der richtigen Region wohnen um voranzukommen	,768	,103	,019
Gender Man muss das richtige Geschlecht haben um voranzukommen	,641	,216	-,034
PolEinst Man muss eine bestimmte politische Einstellung haben um voranzukomen	,743	,199	,024

Rotierte Komponentenmatrix^a

Extraktionsmethode: Hauptkomponentenanalyse. Rotationsmethode: Varimax mit Kaiser-Normalisierung.

a. Die Rotation ist in 5 Iterationen konvergiert.

Ihr entnehmen wir, welche Variable wie hoch auf welchem Faktor lädt.

Zum Beispiel lädt die erste Variable "Wohlstand" besonders hoch auf dem zweiten Faktor, nämlich mit der Ladung 0,734, die Ladung auf den beiden anderen Faktoren ist gering. Generell ist eine Lösung gut, wenn jede Variable nur auf einem Faktor hoch lädt.

Etwas übersichtlicher gestaltet sich das, wenn wir die Variablen nach der Höhe der Faktorladung ordnen lassen und gleichzeitig die Ausgabe von geringen Ladungen unterdrücken (wir unterdrücken Ladungen unter 0,3).

- Übernehmen Sie dazu die vorige Einstellung und ergänzen Sie diese wie folgt:
 - Klicken Sie auf die Schaltfläche "Optionen". Das Dialogfenster "Faktorenanalyse: Optionen" öffnet sich.
 - Markieren Sie im Feld "Anzeigeformat für Koeffizienten" das Kontrollkästchen "Sortiert nach Größe". Danach das Kontrollkästchen "Kleine Koeffizienten unterdrücken" und tragen im Eingabefeld "Absolutwert unter:" in das zugehörige Eingabefeld 0.3 ein.

Bestätigen Sie mit "Weiter" und "OK".

🔄 Faktorenanalyse: Optionen 🛛 💽
Fehlende Werte Listenweiser Fallausschluss Paarweiser Fallausschluss Durch Mittelwert ersetzen
Anzeigeformat für Koeffizienten Image: Sortiert nach Größe Image: Kleine Koeffizienten unterdrücken Absolutwert unter: 0,30
Weiter Abbrechen Hilfe

Die rotierte Komponentenmatrix sieht jetzt wie folgt aus:

	Komponente			
	1	2	3	
Region Man muss in der richtigen Region wohnen um voranzukommen	,768			
Religion Man muss zur richtigen Religion gehören um voranzukommen	,764			
PolEinst Man muss eine bestimmte politische Einstellung haben um voranzukomen	,743			
Gender Man muss das richtige Geschlecht haben um voranzukommen	,641			
Rasse Man muss zur richtigen Rasse gehören um voranzukommen	,631	,316		
Wohlstand Man benötigt eine wohlhabende Familie um voranzukommen		,734		
Bildelt Man benötigt gut ausgebildete Eltern um voranzukommen		,704		
Beziehungen Man muss die rechtigen Leute kennen um voranzukommen		,658		
Polverb Man muss politische Verbindungen haben um voranzukommen	,432	,601		
Fleiss Man muss hart arbeiten um voranzukommen			,781	
Ehrgeiz Man muss ehrgeizig sein um voranzukommen			,716	
Bildselbst Man benötigt gute Ausbildung um voranzukommen		,356	,568	
Fähigkeit Man muss natürliche Fähigkeiten besitzen um voranzukommen			,404	

Rotierte Komponentenmatrix^a

Extraktionsmethode: Hauptkomponentenanalyse. Rotationsmethode: Varimax mit Kaiser-Normalisierung.

a. Die Rotation ist in 5 Iterationen konvergiert.

Wir sehen, dass fast alle Variablen nur auf einem Faktor hoch laden. Nur 3 haben Ladungen höher als 0,3 auf zwei Faktoren.

Außerdem gewinnen wir aus den Bezeichnungen der Variablen, die auf demselben Faktor laden, Hinweise auf die Art des Faktors und können evtl. eine geeignete Bezeichnung für den jeweiligen Faktor daraus gewinnen.

Faktor 1: Soziale Eigenschaften

Faktor 2: Familienfaktor

Faktor 3: Persönliche Fähigkeiten.

	Anfängliche Eigenwerte			Sun Fakto	nmen von qua rladungen für	adrierten Extraktion	Rotierte Summe der quadrierten Ladungen			
Kompo- nente	Gesamt	% der Varianz	Kumulierte %	Gesamt	% der Varianz	Kumulierte %	Gesamt	% der Varianz	Kumulierte %	
1	3,822	29,402	29,402	3,822	29,402	29,402	2,905	22,344	22,344	
2	1,776	13,660	43,062	1,776	13,660	43,062	2,256	17,356	39,699	
3	1,213	9,332	52,394	1,213	9,332	52,394	1,650	12,695	52,394	
4	,953	7,329	59,723							
5	,793	6,099	65,822							
6	,752	5,788	71,610							
7	,664	5,104	76,714							
8	,654	5,029	81,743							
9	,582	4,479	86,222							
10	,496	3,814	90,036							
11	,488	3,755	93,790							
12	,442	3,401	97,191							
13	,365	2,809	100,000							

Erklärte Gesamtvarianz

Extraktionsmethode: Hauptkomponentenanalyse.

Gegenüber der Anfangslösung ändert sich im Übrigen der Anteil der durch die Faktoren gemeinsam erklärten Varianz nicht, wohl aber die durch die einzelnen Faktoren erklärte Varianz.

d.

• Jetzt wollen wir die drei Faktoren als neue Variable der Datei speichern. Jeder Fall bekommt also für jeden der Faktoren einen Wert zugeordnet, den wir später z.B. für weitere Analysen verwenden können. Zur Kalkulation der Faktorscores benutzen wir die voreingestellte Methode "Regression".

Wählen Sie zusätzlich zu der letzten Einstellung Folgendes:

Klicken Sie auf die Schaltfläche "Scores". Die Dialogbox "Faktorenanalyse: Faktorscores" öffnet sich. Aktivieren Sie das Kontrollkästchen "Als Variable speichern" und wählen Sie den Optionsschalter für die Methode "Regression". Aktivieren Sie auch das Kontrollkästchen "Koeffizientenmatrix für Faktorwerte anzeigen". Bestätigen Sie mit "Weiter" und "OK".

Aus der Koeffizientenmatrix der Faktoren kann man entnehmen, mit welchen Gewichten die Werte der einzelnen Variablen in die Berechnung eines Faktorwerts eingehen.

So wird der Faktor 1 berechnet aus: -,091* Wohlstand + -,143* Bildelt + + 0,281*PolEinst

	Komponente		
	1	2	3
Wohlstand Man benötigt eine wohlhabende Familie um voranzukommen	-,091	,388	-,107
Bildelt Man benötigt gut ausgebildete Eltern um voranzukommen	-,143	,386	,008
Bildselbst Man benötigt gute Ausbildung um voranzukommen	-,118	,176	,311
Ehrgeiz Man muss ehrgeizig sein um voranzukommen	-,011	-,041	,442
Fähigkeit Man muss natürliche Fähigkeiten besitzen um voranzukommen	,046	,059	,233
Fleiss Man muss hart arbeiten um voranzukommen	,094	-,202	,512
Beziehungen Man muss die rechtigen Leute kennen um voranzukommen	-,027	,304	,016
Polverb Man muss politische Verbindungen haben um voranzukommen	,049	,246	-,035
Rasse Man muss zur richtigen Rasse gehören um voranzukommen	,201	,041	-,042
Religion Man muss zur richtigen Religion gehören um voranzukommen	,335	-,179	,043
Region Man muss in der richtigen Region wohnen um voranzukommen	,314	-,123	,034
Gender Man muss das richtige Geschlecht haben um voranzukommen	,229	-,021	-,018
PolEinst Man muss eine bestimmte politische Einstellung haben um voranzukomen	,281	-,063	,025

Koeffizientenmatrix der Komponentenwerte

Extraktionsmethode: Hauptkomponentenanalyse.

Rotationsmethode: Varimax mit Kaiser-Normalisierung. Komponentenwerte.

Als Letztes benutzen wir die Faktorscores zum Vergleich der Geschlechter. Wir vergleichen die Mittelwerte auf den drei Faktoren und benutzen dazu den t-Test für unabhängige Stichproben. ("Analysieren", "Mittelwerte vergleichen", "T-Test bei unabhängigen Stichproben". "Testvariable(n)" FAC1-1, FAC2-1, FAC3-1, "Gruppenvariable" GESCHL. Klicken auf "Grup-

pen definieren...". Optionsschalter "Angegebene Werte verwenden", in Eingabefeld "Gruppe 1" 1, für Gruppe 2" 2 eintragen.) Beenden Sie mit "Weiter" und "OK".

🔄 T-Test bei unabhängigen Stichproben 🛛 🔀							
 Jahr ✓ Iahr ✓ Nr ArbStat ✓ Schuljahre Abschl ✓ Wohlstand ✓ Bildelt ✓ Bildselbst ✓ Ehrgeiz ✓ Fähigkeit 	Testvariable(n):	Optionen Bootstrap					
ОК	Einfügen Zurücksetzen Abbrechen	Hilfe					

Gruppenstausuken							
	Geschl	Ν	Mittelwert	Standardab- weichung	Standardfehler des Mittelwertes		
FAC1_1	1 Männlich	580	,0049705	,99692487	,04139505		
	2 Weiblich	755	-,0038184	1,00299961	,03650289		
FAC2_1	1 Männlich	580	-,1277951	,99817278	,04144687		
	2 Weiblich	755	,0981737	,99091692	,03606316		
FAC3_1	1 Männlich	580	,0614535	1,02136029	,04240968		
	2 Weiblich	755	-,0472093	,98134290	,03571472		

		Levene Varianze	-Test der gleichheit	T-Test für die Mittelwertgleichheit							
										95% Konfidenzintervall der Differenz	
		F	Signifikanz	т	df	Sig. (2-seitig)	Mittlere Differenz	Standardfehler der Differenz	Untere	Obere	
FAC1_1	Varianzen sind gleich	,411	,521	,159	1333	,874	,00878885	,05523468	-,09956753	,11714522	
	Varianzen sind nicht gleich			,159	1249,425	,874	,00878885	,05519068	-,09948779	,11706549	
FAC2_1	Varianzen sind gleich	,007	,935	-4,117	1333	,000	-,22596885	,05488736	-,33364386	-,11829383	
	Varianzen sind nicht gleich			-4,113	1241,245	,000	-,22596885	,05493992	-,33375421	-,11818349	
FAC3_1	Varianzen sind gleich	,050	,823	1,970	1333	,049	,10866272	,05515497	,00046273	,21686272	
	Varianzen sind nicht gleich			1,960	1220,192	,050	,10866272	,05544477	-,00011493	,21744037	

Die Analyse ergibt für den ersten Faktor keinen signifikanten Unterschied zwischen Männern und Frauen.

Bei den beiden anderen Faktoren zeigen sich signifikante Unterschiede. Den Faktor "Familie" (FAC2_1) betonen Männer tendenziell eher als Frauen, dagegen betonen die Frauen eher den Faktor "persönliche Fähigkeiten" (FAC3_1).

Test bei unabhängigen Stichproben